Sentinel-2遥感图像的细小水体提取
Small water body extraction method based on Sentinel-2 satellite multi-spectral remote sensing image
- 2022年26卷第4期 页码:781-794
纸质出版日期: 2022-04-07
DOI: 10.11834/jrs.20229340
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-04-07 ,
扫 描 看 全 文
吴庆双,汪明秀,申茜,姚月,李俊生,张方方,周亚明.2022.Sentinel-2遥感图像的细小水体提取.遥感学报,26(4): 781-794
Wu Q S,Wang M X,Shen Q,Yao Y,Li J S,Zhang F F and Zhou Y M. 2022. Small water body extraction method based on Sentinel-2 satellite multi-spectral remote sensing image. National Remote Sensing Bulletin, 26(4):781-794
基于卫星遥感的水体提取算法对面积较大的水体效果较好,应用于细小水体时受混合像元、异物同谱等因素影响,容易出现误判。Sentinel-2卫星多光谱遥感数据空间分辨率为10 m、20 m、60 m,双星时间分辨率5 d,时间和空间分辨率较高,因此本文采用了Sentinel-2绿光波段(560 nm)、红边波段(705 nm)、近红外波段(842 nm、865 nm)和短波红外波段(2190 nm)的遥感反射率,提出了一种植被红边水体指数算法RWI(Vegetation Red Edge based Water Index)。对比分析了植被、阴影、建筑物、混合像元、裸土、水体6种地物的归一化遥感反射率,从机理上解释了为什么RWI比其他水体指数具有更好的提取细小水体的效果。本文对比了常用的几种水体提取算法,包括改进的归一化差异水体指数MNDWI(Modified Normalized Difference Water Index)、多波段水体指数MBWI(Multi-Band Water Index)、自动水提取指数AWEI(Automated Water Extraction Index),以人工目视解译的水体结果为准,对比以上几种算法得到的水体提取结果,得出RWI、MNDWI、MBWI、AWEI
sh
、AWEI
nsh
的面积提取差异分别为3.6%,4.2%,12.2%,8.8%,19.8%。从结果可以看出RWI算法精度最高。从影像提取结果来看,本文提出的RWI算法提取的水体边界效果更佳,而且能够一定程度上消除山体和建筑物阴影、云阴影以及混合像元的影响。同时,在2016-01—2018-12时间范围内筛选选取了共43景无云的Sentinel-2影像,利用本文提出的算法对雄安新区、神东矿区、永城矿区3个区域的细小水体分布开展了多时相分析。观察后发现每个时相的结果均十分良好,细小水体的边界区分度较高,基本没有错提、漏提,算法具有良好的适用性和稳定性。
The water body extraction algorithm based on satellite remote sensing is mainly aimed at large- and medium-sized lakes or large rivers. When applied to small water bodies
misjudging often occurs. The multi-spectral remote sensing data of the Sentinel 2 satellite has a spatial resolution of 10
20
and 60 meters; a dual-star time resolution of 5 days; and a high temporal and spatial resolution. Therefore
this paper uses the sentinel-2 green light band (560 nm)
red-edge band (705 nm)
near-infrared band (842 nm
865 nm)
and short wave-infrared band (2190 nm) for remote sensing reflectance. A new water index algorithm (red edge-based water index
RWI for short) is proposed for the extraction of fine water. The normalized remote sensing reflectance of vegetation
shadow
building
mixed pixel
bare soil
and water body is compared and analyzed. The mechanism explains why RWI has a better effect of extracting fine water bodies compared with other water body indexes.To quantitatively evaluate the advantages of the RWI water body extraction algorithm proposed in this paper
this paper compares several current water body extraction algorithms
including the improved normalized difference water index MNDWI (modified normalized difference water index)
multi-band water body index MBWI (multi-band water index)
and AWEI (automatic water extraction index). The water body extraction results obtained by several algorithms and the area statistics of the artificial water interpretation of the water body results are calculated using the error formula to obtain RWI. The errors of MNDWI
MBWI
AWEI
sh
and AWEI
nsh
are 3.6%
4.2%
12.2%
8.8%
and 19.8%
respectively. Results show that the RWI algorithm has the highest accuracy. At the same time
through analysis
the advantages and disadvantages of several water extraction results are quantitatively evaluated. From the results of image extraction
this paper proposes that the water boundary extraction method extracted by the RWI water body extraction algorithm is better
and it can eliminate mountains
building shadows
and clouds. The effect of shadows can eliminate the effects of mixed pixels.
At the same time
this paper carried out multi-temporal water extraction in Xiong’an New District
Shendong Mining Area
and Yongcheng Mining Area. In the time range from January 2016 to December 2018
a total of 43 Sentinel-2 images without clouds were screened
and the small broken water bodies in the three areas of Xiong’an New District
Shendong Mining Area
and Yongcheng Mining Area were selected by the algorithm proposed in this paper. The distribution carried out multi-temporal analysis. Results from statistical area analysis indicate that Xiong’an New District has the largest water body area in spring
followed by summer and autumn. No significant change in water area was observed in the Shendong and Yongcheng mining areas. After careful observation
the results of each phase are very good
the boundary of the small water body is highly differentiated
and no data are misleading or missing
and the algorithm has good applicability and stability.
水体提取水体指数细小水体Sentinel-2RWIMNDWIMBWIAWEI
water extractionwater body indexsmall water bodySentinel-2RWIMNDWIMBWIAWEI
Cao R L, Li C J, Liu L Y, Wang J H and Yan G J. 2008. Extracting Miyun reservoir’s water area and monitoring its change based on a revised normalized different water index. Science of Surveying and Mapping, 33(2): 158-160
曹荣龙, 李存军, 刘良云, 王纪华, 阎广建. 2008. 基于水体指数的密云水库面积提取及变化监测. 测绘科学, 33(2): 158-160 [DOI: 10.3771/j.issn.1009-2307.2008.02.054http://dx.doi.org/10.3771/j.issn.1009-2307.2008.02.054]
Chen J. 2010. Study on Obiect-based Classification of High-resolution Remote Sensing Imagery. Changsha: Central South University
陈杰. 2010. 高分辨率遥感影像面向对象分类方法研究. 长沙: 中南大学
Danaher T and Collett L. 2006. Development optimisation and multi-temporal application of a simple Landsat based water index//Proceedings of the 13th Australasian Remote Sensing and Photogrammetry Conference. Canberra: Spatial Sciences Institute
Ding F. 2009. Study on information extraction of water body with a new water index (NWI). Science of Surveying and Mapping, 34(4): 155-157
丁凤. 2009. 基于新型水体指数(NWI)进行水体信息提取的实验研究. 测绘科学, 34(4): 155-157
Du Y, Zhang Y H, Ling F, Wang Q M, Li W B and Li X D. 2016. Water bodies’ mapping from sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sensing, 8(4): 354 [DOI: 10.3390/rs8040354http://dx.doi.org/10.3390/rs8040354]
European Space Agency. 2015. ESA standard document[S/OL]. (2015-07-24)[2020-01-08]. https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbookhttps://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook
欧洲航天局. 2015. ESA标准文件[S/OL]. (2015-07-24)[2020-01-08]. https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbookhttps://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook
Feyisa G L, Meilby H, Fensholt R and Proud S R. 2014. Automated water extraction index: a new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140: 23-35 [DOI: 10.1016/j.rse.2013.08.029http://dx.doi.org/10.1016/j.rse.2013.08.029]
Fisher A, Flood N and Danaher T. 2016. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sensing of Environment, 175: 167-182 [DOI: 10.1016/j.rse.2015.12.055http://dx.doi.org/10.1016/j.rse.2015.12.055]
Hong L, Huang Y J, Yang K, Peng S Y and Xu Q L. 2019. Study on urban surface water extraction from heterogeneous environments using GF-2 remotely sensed images. Journal of Remote Sensing, 23(5): 871-882
洪亮, 黄雅君, 杨昆, 彭双云, 许泉立. 2019. 复杂环境下高分二号遥感影像的城市地表水体提取. 遥感学报, 23(5): 871-882 [DOI: 10.11834/jrs.20198064http://dx.doi.org/10.11834/jrs.20198064]
Ji H X, Fan X W, Wu G P and Liu Y B. 2015. Accuracy comparison and analysis of methods for water area extraction of discrete lakes. Journal of Lake Sciences, 27(2): 327-334
吉红霞, 范兴旺, 吴桂平, 刘元波. 2015. 离散型湖泊水体提取方法精度对比分析. 湖泊科学, 27(2): 327-334 [DOI: 10.18307/2015.0218http://dx.doi.org/10.18307/2015.0218]
Jiang H, Feng M, Zhu Y Q, Lu N, Huang J X and Xiao T. 2014. An automated method for extracting rivers and lakes from Landsat imagery. Remote Sensing, 6(6): 5067-5089 [DOI: 10.3390/rs6065067http://dx.doi.org/10.3390/rs6065067]
Lu S L, Wu B F, Yan N N and Wang H. 2011. Water body mapping method with HJ-1A/B satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 13(3): 428-434 [DOI: 10.1016/j.jag.2010.09.006http://dx.doi.org/10.1016/j.jag.2010.09.006]
McFeeters S K. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7): 1425-1432 [DOI: 10.1080/01431169608948714http://dx.doi.org/10.1080/01431169608948714]
Wang D Z, Wang S M and Huang C. 2019. Comparison of Sentinel-2 imagery with Landsat8 imagery for surface water extraction using four common water indexes. Remote Sensing for Land and Resources, 31(3): 157-165
王大钊, 王思梦, 黄昌. 2019. Sentinel-2和Landsat8影像的四种常用水体指数地表水体提取对比. 国土资源遥感, 31(3): 157-165 [DOI: 10.6046/gtzyyg.2019.03.20http://dx.doi.org/10.6046/gtzyyg.2019.03.20]
Wang X B, Xie S P and Du J K. 2018. Water index formulation and its effectiveness research on the complicated surface water surroundings. Journal of Remote Sensing, 22(2): 360-372
王小标, 谢顺平, 都金康. 2018. 水体指数构建及其在复杂环境下有效性研究. 遥感学报, 22(2): 360-372 [DOI: 10.11834/jrs.20186463http://dx.doi.org/10.11834/jrs.20186463]
Wang X B, Xie S P, Zhang X L, Chen C, Guo H, Du J K and Duan Z. 2018a. A robust Multi-Band Water Index (MBWI) for automated extraction of surface water from Landsat 8 OLI imagery. International Journal of Applied Earth Observation and Geoinformation, 68: 73-91 [DOI: 10.1016/j.jag.2018.01.018http://dx.doi.org/10.1016/j.jag.2018.01.018]
Wang Z F, Liu J G, Li J B and Zhang D D. 2018b. Multi-spectral water index (MuWI): a native 10-m multi-spectral water index for accurate water mapping on sentinel-2. Remote Sensing, 10(10): 1643 [DOI: 10.3390/rs10101643http://dx.doi.org/10.3390/rs10101643]
Xiao Y F, Zhao W J and Zhu L. 2010. A study on information extraction of water body using band1 and band7 of TM imagery. Science of Surveying and Mapping, 35(5): 226-227, 216
肖艳芳, 赵文吉, 朱琳. 2010. 利用TM影像Band1与Band7提取水体信息. 测绘科学, 35(5): 226-227, 216 [DOI: 10.16251/j.cnki.1009-2307.2010.05.083http://dx.doi.org/10.16251/j.cnki.1009-2307.2010.05.083]
Xu H Q. 2005. A study on information extraction of water body with the modified normalized difference water index (MNDWI). Journal of Remote Sensing, 9(5): 589-595
徐涵秋. 2005. 利用改进的归一化差异水体指数 (MNDWI)提取水体信息的研究. 遥感学报, 9(5): 589-595 [DOI: 10.11834/jrs.20050586http://dx.doi.org/10.11834/jrs.20050586]
Xu H Q. 2008. Comment on the enhanced water index (EWI): a discussion on the creation of a water index. Geo-Information Science, 10(6): 776-780
徐涵秋. 2008. 从增强型水体指数分析遥感水体指数的创建. 地球信息科学, 10(6): 776-780 [DOI: 10.3969/j.issn.1560-8999.2008.06.016http://dx.doi.org/10.3969/j.issn.1560-8999.2008.06.016]
Yan P, Zhang Y J and Zhang Y. 2007. A study on information extraction of water system in semi-arid regions with the enhanced water index (EWI) and GIS based noise remove techniques. Remote Sensing Information, (6): 62-67
闫霈, 张友静, 张元. 2007. 利用增强型水体指数(EWI)和GIS去噪音技术提取半干旱地区水系信息的研究. 遥感信息, (6): 62-67 [DOI: 10.3969/j.issn.1000-3177.2007.06.015http://dx.doi.org/10.3969/j.issn.1000-3177.2007.06.015]
Yang X C, Qin Q M, Grussenmeyer P and Koehl M. 2018. Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery. Remote Sensing of Environment, 219: 259-270 [DOI: 10.1016/j.rse.2018.09.016http://dx.doi.org/10.1016/j.rse.2018.09.016]
Yang Y and Ruan R Z. 2010. Extraction of plain lake water body based on TM imagery. Remote Sensing Information, (3): 60-64
杨莹, 阮仁宗. 2010. 基于TM影像的平原湖泊水体信息提取的研究. 遥感信息, (3): 60-64 [DOI: 10.3969/j.issn.1000-3177.2010.03.013http://dx.doi.org/10.3969/j.issn.1000-3177.2010.03.013]
Yin Q J and Yang Y L. 2005. Remote sensing monitoring of lake Qinghai based on EOS/MODIS Data. Journal of Lake Sciences, 17(4): 356-360
殷青军, 杨英莲. 2005. 基于EOS/MODIS数据的青海湖遥感监测. 湖泊科学, 17(4): 356-360 [DOI: 10.18307/2005.0413http://dx.doi.org/10.18307/2005.0413]
Zhang M H. 2008. Extracting water-body information with improved medal of spectal relationship in a higher mountain area. Geography and Geo-Information Science, 24(2): 14-16, 22
张明华. 2008. 用改进的谱间关系模型提取极高山地区水体信息. 地理与地理信息科学, 24(2): 14-16, 22
相关作者
相关机构