全球湿地遥感研究综述:1975年—2020年
Review of global studies on the remote sensing of wetlands from 1975 to 2020
- 2023年27卷第6期 页码:1270-1280
纸质出版日期: 2023-06-07
DOI: 10.11834/jrs.20231022
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-06-07 ,
扫 描 看 全 文
毛德华,王宗明,贾明明,罗玲,牛振国,蒋卫国,孙伟伟.2023.全球湿地遥感研究综述:1975年—2020年.遥感学报,27(6): 1270-1280
Mao D H, Wang Z M, Jia M M, Luo L, Niu Z G, Jiang W G and Sun W W. 2023 Review of global studies on the remote sensing of wetlands from 1975 to 2020. National Remote Sensing Bulletin, 27(6):1270-1280
在显著气候变化叠加人类活动干扰的背景下,可持续的湿地生态系统管理对于湿地空间信息的需求不断提升,湿地遥感作为重要的交叉学科方向,研究成果日益增多。本文以Web of Science核心合集为数据库,通过检索过去50年湿地遥感论文成果,总结了湿地遥感研究全球发文量和引文量的变化情况;进行文献计量分析,探讨湿地遥感研究的发展历程和发展趋势。论文将湿地遥感研究划分为潜力探索期、框架成形期、快速增长期3个阶段,进而总结分析了不同阶段湿地遥感的研究主题和主要数据源;最后基于VOCviewer软件对湿地遥感研究热点关键词进行综述,从大数据时代背景下的湿地遥感分类及景观动态、精细化的湿地生态参量遥感观测、湿地可持续管理空间决策支持3个方面进行了未来研究趋势的展望。本研究将为理解国际湿地遥感研究发展历史、把握湿地遥感研究国际前沿、进行国内湿地遥感研究布局提供借鉴。
Sustainable ecosystem management requires considerable wetland spatial information given the evident climate change impacts and human disturbances on wetlands. Remote sensing of wetlands
as an important interdiscipline
has increasing publications. Here
we searched for published papers in the past 50 years from the “Web of Science Core Collection” database. We summarized the changes in the number of publications and citations and the development process and trend in remote sensing of wetlands. We divided the development history into three research periods including potential exploration phase
framework emerging phase
and rapid growth phase. Based on the development history over the past 50 years and facing the background of wetland ecosystem protection demand in the era of big data
studies on remote sensing of wetlands have developed in the direction of fast
multisource
and fine
such as wetland intelligent classification
remote sensing inversion of large-scale wetland vegetation ecological parameters
and wetland ecosystem health assessment. However
the spectral and backscattering characteristics of wetlands are complex due to the interaction of water
vegetation
and soil
and their annual/inter-annual variation characteristics are notable
aggravating the difficulty of remote sensing detection of wetlands. This condition is a key issue that requires resolution at present. Thus
the multimodal remote sensing experiments of wetlands should be strengthened. We also concluded the main research topics and data sources in different phases and analyzed the hotspots in remote sensing of wetlands by the extracted keywords from 500 latest and top-cited papers. Three outlook bullets were presented from the wetland classification and landscape dynamics in the era of big data
the fine remote sensing observations in wetland ecological variables
and the spatial decision support for sustainable wetland management. Based on cloud platforms (such as GEE)
carrying out large-scale and long-term wetland mapping and landscape dynamic analysis by means of time series remotely sensed data (i.e.
Landsat and Sentinel)
investigating the application potential of diverse machine learning algorithms (i.e.
random forest and deep learning) for wetland ecological parameter inversion at different geographic scales
establishing a scientific indicator system
and fully applying the multisource and multiplatform remote sensing observation technology to solve the actual ecological environment problems are important development trends and research hotspots of future wetland remote sensing studies. We hope that this review not only provides a glimpse
but also a framework understanding of wetland remote sensing research. With the improvement on the awareness of the importance of wetland ecosystem
the number of scholars engaged in research of remote sensing of wetlands increases. The review is expected to be beneficial for understanding the development history and international frontiers for studies in remote sensing of wetlands and to support their layout domestically and abroad.
全球尺度湿地遥感综述长时序大数据人工智能云平台可持续发展
global scaleremote sensing of wetlandsreviewlong time seriesbig dataartificial intelligencecloud platformsustainable development
Adam E, Mutanga O and Rugege D. 2010. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands Ecology and Management, 18(3): 281-296 [DOI: 10.1007/s11273-009-9169-zhttp://dx.doi.org/10.1007/s11273-009-9169-z]
Alonso A, Muñoz-Carpena R and Kaplan D. 2020. Coupling high-resolution field monitoring and MODIS for reconstructing wetland historical hydroperiod at a high temporal frequency. Remote Sensing of Environment, 247: 111807 [DOI: 10.1016/j.rse.2020.111807http://dx.doi.org/10.1016/j.rse.2020.111807]
Amani M, Brisco B, Mahdavi S, Ghorbanian A, Moghimi A, DeLancey E R, Merchant M, Jahncke R, Fedorchuk L, Mui A, Fisette T, Kakooei M, Ahmadi S A, Leblon B and LaRocque A. 2021. Evaluation of the Landsat-based Canadian wetland inventory map using multiple sources: challenges of large-scale wetland classification using remote sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 32-52 [DOI: 10.1109/JSTARS.2020.3036802http://dx.doi.org/10.1109/JSTARS.2020.3036802]
Amani M, Mahdavi S, Afshar M, Brisco B, Huang W M, Mohammad Javad Mirzadeh S, White L, Banks S, Montgomery J and Hopkinson C. 2019. Canadian wetland inventory using Google Earth engine: the first map and preliminary results. Remote Sensing, 11(7): 842 [DOI: 10.3390/rs11070842http://dx.doi.org/10.3390/rs11070842]
Baker C, Lawrence R, Montagne C and Patten D. 2006. Mapping wetlands and riparian areas using Landsat ETM+ imagery and decision-tree-based models. Wetlands, 26(2): 465-474 [DOI: 10.1672/0277-5212(2006)26http://dx.doi.org/10.1672/0277-5212(2006)26[465:MWARAU]2.0.CO;2]
Bartlett D S, Bartlett K B, Hartman J M, Harriss R C, Sebacher D I, Pelletier-Travis R, Dow D D and Brannon D P. 1989. Methane emissions from the Florida Everglades: patterns of variability in a regional wetland ecosystem. Global Biogeochemical Cycles, 3(4): 363-374 [DOI: 10.1029/GB003i004p00363http://dx.doi.org/10.1029/GB003i004p00363]
Bunting P, Rosenqvist A, Lucas R M, Rebelo L M, Hilarides L, Thomas N, Hardy A, Itoh T, Shimada M and Finlayson C M. 2018. The global mangrove watch-A new 2010 global baseline of mangrove extent. Remote Sensing, 10(10): 1669 [DOI: 10.3390/rs10101669http://dx.doi.org/10.3390/rs10101669]
Butera M K. 1983. Remote sensing of wetlands. IEEE Transactions on Geoscience and Remote Sensing, GE-21(3): 383-392 [DOI: 10.1109/TGRS.1983.350471http://dx.doi.org/10.1109/TGRS.1983.350471]
Byrd K B, Ballanti L, Thomas N, Nguyen D, Holmquist J R, Simard M and Windham-Myers L. 2018. A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States. ISPRS Journal of Photogrammetry and Remote Sensing, 139: 255-271 [DOI: 10.1016/j.isprsjprs.2018.03.019http://dx.doi.org/10.1016/j.isprsjprs.2018.03.019]
Chen Y Y and Lü X G. 2003. The wetland function and research tendency of wetland science. Wetland Science, 1(1): 7-11
陈宜瑜, 吕宪国. 2003. 湿地功能与湿地科学的研究方向. 湿地科学, 1(1): 7-11 [DOI: 10.3969/j.issn.1672-5948.2003.01.003http://dx.doi.org/10.3969/j.issn.1672-5948.2003.01.003]
Chi M M, Plaza A, Benediktsson J A, Sun Z Y, Shen J S and Zhu Y Y. 2016. Big data for remote sensing: challenges and opportunities. Proceedings of the IEEE, 104(11): 2207-2219 [DOI: 10.1109/JPROC.2016.2598228http://dx.doi.org/10.1109/JPROC.2016.2598228]
Dong J W, Kuang W H and Liu J Y. 2017. Continuous land cover change monitoring in the remote sensing big data era. Science China Earth Sciences, 60(12): 2223-2224
董金玮, 匡文慧, 刘纪远. 2018. 遥感大数据支持下的全球土地覆盖连续动态监测. 中国科学: 地球科学, 48(2): 259-260 [DOI: 10.1360/N072017-00288http://dx.doi.org/10.1360/N072017-00288]
Dronova I. 2015. Object-based image analysis in wetland research: a review. Remote Sensing, 7(5): 6380-6413 [DOI: 10.3390/rs70506380http://dx.doi.org/10.3390/rs70506380]
Finlayson C M and van der Valk A G. 1995. Wetland classification and inventory: a summary. Vegetatio, 118(1/2): 185-192 [DOI: 10.1007/BF00045199http://dx.doi.org/10.1007/BF00045199]
Finlayson M and Moser M. 1991. International Waterfowl and Wetlands Research Bureau and Facts on File. Wetlands
Gallant A L. 2015. The challenges of remote monitoring of wetlands. Remote Sensing, 7(8): 10938-10950 [DOI: 10.3390/rs70810938http://dx.doi.org/10.3390/rs70810938]
Gilmer D S, Work E A, Colwell J E and Rebel D L. 1980. Enumeration of prairie wetlands with Landsat and aircraft data. Photogrammetric Engineering and Remote Sensing, 46(5): 631-634
Gong P, Niu Z G, Cheng X, Zhao K Y, Zhou D M, Guo J H, Liang L, Wang X F, Li D D, Huang H B, Wang Y, Wang K, Li W N, Wang X W, Ying Q, Yang Z Z, Ye Y F, Li Z, Zhuang D F, Chi Y B, Zhou H Z and Yan J. 2010. China’s wetland change (1990-2000) determined by remote sensing. Science China Earth Sciences, 53(7): 1036-1042 [DOI: 10.1007/s11430-010-4002-3http://dx.doi.org/10.1007/s11430-010-4002-3]
Guo M, Li J, Sheng C L, Xu J W and Wu L. 2017. A review of wetland remote sensing. Sensors, 17(4): 777 [DOI: 10.3390/s17040777http://dx.doi.org/10.3390/s17040777]
Hardisky M A, Daiber F C, Roman C T and Klemas V. 1984. Remote sensing of biomass and annual net aerial primary productivity of a salt marsh. Remote Sensing of Environment, 16(2): 91-106 [DOI: 10.1016/0034-4257(84)90055-5http://dx.doi.org/10.1016/0034-4257(84)90055-5]
Henderson F M and Lewis A J. 2008. Radar detection of wetland ecosystems: a review. International Journal of Remote Sensing, 29(20): 5809-5835 [DOI: 10.1080/01431160801958405http://dx.doi.org/10.1080/01431160801958405]
Hester M W and Mendelssohn I A. 2000. Long-term recovery of a Louisiana brackish marsh plant community from oil-spill impact: vegetation response and mitigating effects of marsh surface elevation. Marine Environmental Research, 49(3): 233-254 [DOI: 10.1016/S0141-1136(99)00071-9http://dx.doi.org/10.1016/S0141-1136(99)00071-9]
Hirano A, Madden M and Welch R. 2003. Hyperspectral image data for mapping wetland vegetation. Wetlands, 23(2): 436-448 [DOI: 10.1672/18-20http://dx.doi.org/10.1672/18-20]
Hirtle H and Rencz A. 2003. The relation between spectral reflectance and dissolved organic carbon in lake water: Kejimkujik National Park, Nova Scotia, Canada. International Journal of Remote Sensing, 24(5): 953-967 [DOI: 10.1080/01431160210154957http://dx.doi.org/10.1080/01431160210154957]
Kang X M, Hao Y B, Cui X Y, Chen H, Huang S X, Du Y G, Li W, Kardol P, Xiao X M and Cui L J. 2016. Variability and changes in climate, phenology, and gross primary production of an alpine wetland ecosystem. Remote Sensing, 8(5): 391 [DOI: 10.3390/rs8050391http://dx.doi.org/10.3390/rs8050391]
Keddy P A. 2010. Wetland Ecology Principles and Conservation. 2nd ed. Cambridge: Cambridge University Press
Keramitsoglou L, Sarimveis H, Kiranoudis C T, Kontoes C, Sifakis N and Fitoka E. 2006. The performance of pixel window algorithms in the classification of habitats using VHSR imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 60(4): 225-238 [DOI: 10.1016/j.isprsjprs.2006.01.002http://dx.doi.org/10.1016/j.isprsjprs.2006.01.002]
Klemas V. 2011. Remote sensing of wetlands: case studies comparing practical techniques. Journal of Coastal Research, 27(3): 418-427 [DOI: 10.2112/JCOASTRES-D-10-00174.1http://dx.doi.org/10.2112/JCOASTRES-D-10-00174.1]
Klemas V V. 2015. Coastal and environmental remote sensing from unmanned aerial vehicles: an overview. Journal of Coastal Research, 31(5): 1260-1267 [DOI: 10.2112/JCOASTRES-D-15-00005.1http://dx.doi.org/10.2112/JCOASTRES-D-15-00005.1]
Luo L, Mao D H, Wang Z M, Du B J, Yan H Q and Zhang B. 2018. Remote sensing and GIS support to identify potential areas for wetland restoration from cropland: a case study in the West Songnen Plain, Northeast China. Sustainability, 10(7): 2375 [DOI: 10.3390/su10072375http://dx.doi.org/10.3390/su10072375]
Ma Y, Wu H P, Wang L Z, Huang B M, Ranjan R, Zomaya A and Jie W. 2015. Remote sensing big data computing: challenges and opportunities. Future Generation Computer Systems, 51: 47-60 [DOI: 10.1016/j.future.2014.10.029http://dx.doi.org/10.1016/j.future.2014.10.029]
Mahdavi S, Salehi B, Granger J, Amani M, Brisco B and Huang W M. 2018. Remote sensing for wetland classification: a comprehensive review. GIScience and Remote Sensing, 55(5): 623-658 [DOI: 10.1080/15481603.2017.1419602http://dx.doi.org/10.1080/15481603.2017.1419602]
Mahdianpari M, Granger J E, Mohammadimanesh F, Salehi B, Brisco B, Homayouni S, Gill E, Huberty B and Lang M G. 2020b. Meta-analysis of wetland classification using remote sensing: a systematic review of a 40-year trend in North America. Remote Sensing, 12(11): 1882 [DOI: 10.3390/rs12111882http://dx.doi.org/10.3390/rs12111882]
Mahdianpari M, Salehi B, Mohammadimanesh F, Brisco B, Homayouni S, Gill E, DeLancey E R and Bourgeau-Chavez L. 2020a. Big data for a big country: the first generation of Canadian wetland inventory map at a spatial resolution of 10-m using sentinel-1 and sentinel-2 data on the Google earth engine cloud computing platform. Canadian Journal of Remote Sensing, 46(1): 15-33 [DOI: 10.1080/07038992.2019.1711366http://dx.doi.org/10.1080/07038992.2019.1711366]
Maheu-Giroux M and de Blois S. 2005. Mapping the invasive species Phragmites australis in linear wetland corridors. Aquatic Botany, 83(4): 310-320 [DOI: 10.1016/j.aquabot.2005.07.002http://dx.doi.org/10.1016/j.aquabot.2005.07.002]
Mao D H, Liu M Y, Wang Z M, Li L, Man W D, Jia M M and Zhang Y Z. 2019. Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: spatiotemporal patterns and human prevention. Sensors, 19(10): 2308 [DOI: 10.3390/s19102308http://dx.doi.org/10.3390/s19102308]
Mao D H, Luo L, Wang Z M, Wilson M C, Zeng Y, Wu B F and Wu J G. 2018b. Conversions between natural wetlands and farmland in China: a multiscale geospatial analysis. Science of the Total Environment, 634: 550-560 [DOI: 10.1016/j.scitotenv.2018.04.009http://dx.doi.org/10.1016/j.scitotenv.2018.04.009]
Mao D H, Wang Z M, Du B J, Li L, Tian Y L, Jia M M, Zeng Y, Song K S, Jiang M and Wang Y Q. 2020. National wetland mapping in China: a new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS Journal of Photogrammetry and Remote Sensing, 164: 11-25 [DOI: 10.1016/j.isprsjprs.2020.03.020http://dx.doi.org/10.1016/j.isprsjprs.2020.03.020]
Mao D H, Wang Z M, Wu J G, Wu B F, Zeng Y, Song K S, Yi K P and Luo L. 2018a. China's wetlands loss to urban expansion. Land Degradation and Development, 29(8): 2644-2657 [DOI: 10.1002/ldr.2939http://dx.doi.org/10.1002/ldr.2939]
Matthews S B. 1991. An assessment of bison habitat in the Mills/Mink Lakes area, Northwest Territories, using LANDSAT thematic mapper data. Arctic, 44(5): 75-80 [DOI: 10.14430/arctic1573http://dx.doi.org/10.14430/arctic1573]
Millennium Ecosystem Assessment. 2005. Ecosystems and Human Well-Being: Wetlands and Water Synthesis. World Resources Institute
Mizuochi H, Nishiyama C, Ridwansyah I and Nasahara K N. 2018. Monitoring of an Indonesian tropical wetland by machine learning-based data fusion of passive and active microwave sensors. Remote Sensing, 10(8): 1235 [DOI: 10.3390/rs10081235http://dx.doi.org/10.3390/rs10081235]
Morrissey L A, Livingston G P and Durden S L. 1994. Use of SAR in regional methane exchange studies. International Journal of Remote Sensing, 15(6): 1337-1342 [DOI: 10.1080/01431169408954167http://dx.doi.org/10.1080/01431169408954167]
Murray N J, Phinn S R, DeWitt M, Ferrari R, Johnston R, Lyons M B, Clinton N, Thau D and Fuller R A. 2019. The global distribution and trajectory of tidal flats. Nature, 565(7738): 222-225 [DOI: 10.1038/s41586-018-0805-8http://dx.doi.org/10.1038/s41586-018-0805-8]
National Research Council. 1995. Wetlands: Characteristics and Boundaries. National Academy Press
Niu Z G, Gong P, Cheng X, Guo J H, Wang L, Huang H B, Shen S Q, Wu Y Z, Wang X F, Wang X W, Ying Q, Liang L, Zhang L N, Wang L, Yao Q, Yang Z Z, Guo Z Q and Dai Y J. 2009. Geographical characteristics of China’s wetlands derived from remotely sensed data. Science in China Series D: Earth Sciences, 52(6): 723-738 [DOI: 10.1007/s11430-009-0075-2http://dx.doi.org/10.1007/s11430-009-0075-2]
Niu Z G, Zhang H Y, Wang X W, Yao W B, Zhou D M, Zhao K Y, Zhao H, Li N N, Huang H B, Li C C, Yang J, Liu C X, Liu S, Wang L, Li Z, Yang Z Z, Qiao F, Zheng Y M, Chen Y L, Sheng Y M, Gao X H, Zhu W H, Wang W Q, Wang H, Weng Y L, Zhuang D F, Liu J Y, Luo Z C, Cheng X, Guo Z Q and Gong P. 2012. Mapping wetland changes in China between 1978 and 2008. Chinese Science Bulletin, 57(22): 2813-2823 [DOI: 10.1007/s11434-012-5093-3http://dx.doi.org/10.1007/s11434-012-5093-3]
O’Neil G L, Goodall J L, Behl M and Saby L. 2020. Deep learning using physically-informed input data for wetland identification. Environmental Modelling and Software, 126: 104665 [DOI: 10.1016/j.envsoft.2020.104665http://dx.doi.org/10.1016/j.envsoft.2020.104665]
Ozesmi S L and Bauer M E. 2002. Satellite remote sensing of wetlands. Wetlands Ecology and Management, 10(5): 381-402 [DOI: 10.1023/A:1020908432489http://dx.doi.org/10.1023/A:1020908432489]
Pope K O, Rey-Benayas J M and Paris J F. 1994. Radar remote sensing of forest and wetland ecosystems in the Central American tropics. Remote Sensing of Environment, 48(2): 205-219 [DOI: 10.1016/0034-4257(94)90142-2http://dx.doi.org/10.1016/0034-4257(94)90142-2]
Poulin B, Davranche A and Lefebvre G. 2010. Ecological assessment of Phragmites australis wetlands using multi-season SPOT-5 scenes. Remote Sensing of Environment, 114(7): 1602-1609 [DOI: 10.1016/j.rse.2010.02.014http://dx.doi.org/10.1016/j.rse.2010.02.014]
Ramsar Convention on Wetlands. 2018. Global Wetland Outlook: State of the World’s Wetlands and Their Services to People 2018. Ramsar Convention Secretariat
Reimold R J and Linthurst R A. 1975. Use of remote sensing for mapping wetlands. Transportation Engineering Journal of ASCE, 101(2): 189-198 [DOI: 10.1061/TPEJAN.0000497http://dx.doi.org/10.1061/TPEJAN.0000497]
Rundquist D C, Narumalani S and Narayanan R M. 2001. A review of wetlands remote sensing and defining new considerations. Remote Sensing Reviews, 20(3): 207-226 [DOI: 10.1080/02757250109532435http://dx.doi.org/10.1080/02757250109532435]
Seto K C and Fragkias M. 2007. Mangrove conversion and aquaculture development in Vietnam: a remote sensing-based approach for evaluating the Ramsar convention on wetlands. Global Environmental Change, 17(3/4): 486-500 [DOI: 10.1016/j.gloenvcha.2007.03.001http://dx.doi.org/10.1016/j.gloenvcha.2007.03.001]
Sun J, Zhang Y, Wu Z B, Zhu Y Q, Yin X L, Ding Z Z, Wei Z H, Plaza J and Plaza A. 2019. An efficient and scalable framework for processing remotely sensed big data in cloud computing environments. IEEE Transactions on Geoscience and Remote Sensing, 57(7): 4294-4308 [DOI: 10.1109/TGRS.2018.2890513http://dx.doi.org/10.1109/TGRS.2018.2890513]
Szantoi Z, Escobedo F J, Abd-Elrahman A, Pearlstine L, Dewitt B and Smith S. 2015. Classifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural features. Environmental Monitoring and Assessment, 187(5): 262 [DOI: 10.1007/s10661-015-4426-5http://dx.doi.org/10.1007/s10661-015-4426-5]
Taddeo S, Dronova I and Depsky N. 2019. Spectral vegetation indices of wetland greenness: responses to vegetation structure, composition, and spatial distribution. Remote Sensing of Environment, 234: 111467 [DOI: 10.1016/j.rse.2019.111467http://dx.doi.org/10.1016/j.rse.2019.111467]
Tong Q X, Zheng L F, Wang J N, Wang X J, Dong W D, Hu Y M and Dang S X. 1997. Study on imaging spectrometer remote sensing information for wetland vegetation. Journal of Remote Sensing, 1(1): 50-57
童庆禧, 郑兰芬, 王晋年, 王向军, 董卫东, 胡远满, 党顺行. 1997. 湿地植被成象光谱遥感研究. 遥感学报, 1(1): 50-57 [DOI: 10.11834/jrs.19970108http://dx.doi.org/10.11834/jrs.19970108]
Wang L, Jia M M, Yin D M and Tian J Y. 2019. A review of remote sensing for mangrove forests: 1956-2018. Remote Sensing of Environment, 231: 111223 [DOI: 10.1016/j.rse.2019.111223http://dx.doi.org/10.1016/j.rse.2019.111223]
Wang Z M, Wu J G, Madden M and Mao D H. 2012. China’s wetlands: conservation plans and policy impacts. AMBIO, 41(7): 782-786 [DOI: 10.1007/s13280-012-0280-7http://dx.doi.org/10.1007/s13280-012-0280-7]
Xiang H X, Wang Z M, Mao D H, Zhang J, Xi Y B, Du B J and Zhang B. 2020. What did China’s national wetland conservation program achieve? Observations of changes in land cover and ecosystem services in the Sanjiang Plain. Journal of Environmental Management, 267: 110623 [DOI: 10.1016/j.jenvman.2020.110623http://dx.doi.org/10.1016/j.jenvman.2020.110623]
Xu W H, Fan X Y, Ma J G, Pimm S L, Kong L Q, Zeng Y, Li X S, Xiao Y, Zheng H, Liu J G, Wu B F, An L, Zhang L, Wang X K and Ouyang Z Y. 2019. Hidden loss of wetlands in China. Current Biology, 29(18): 3065-3071.e2 [DOI: 10.1016/j.cub.2019.07.053http://dx.doi.org/10.1016/j.cub.2019.07.053]
Zhang B. 1996. Application of remote sensing technology on research of the wetland in China. Remote Sensing Technology and Application, 11(1): 67-71
张柏. 1996. 遥感技术在中国湿地研究中的应用. 遥感技术与应用, 11(1): 67-71 [DOI: 10.11873/j.issn.1004-0323.1996.1.67http://dx.doi.org/10.11873/j.issn.1004-0323.1996.1.67]
Zhang B. 2017. Current status and future prospects of remote sensing. Bulletin of Chinese Academy of Sciences, 32(7): 774-784
张兵. 2017. 当代遥感科技发展的现状与未来展望. 中国科学院院刊, 32(7): 774-784 [DOI: 10.16418/j.issn.1000-3045.2017.07.012http://dx.doi.org/10.16418/j.issn.1000-3045.2017.07.012]
Zhang B, Chen, Z C, Peng D L, Benediktsson J A, Liu B, Zou L, Li J and Plaza A. 2019. Remotely sensed big data: evolution in model development for information extraction [point of view]. Proceedings of the IEEE, 107(12): 2294-2301 [DOI: 10.1109/JPROC.2019.2948454http://dx.doi.org/10.1109/JPROC.2019.2948454]
Zhang C H, Kovacs J M, Wachowiak M P and Flores-Verdugo F. 2013. Relationship between hyperspectral measurements and mangrove leaf nitrogen concentrations. Remote Sensing, 5(2): 891-908 [DOI: 10.3390/rs5020891http://dx.doi.org/10.3390/rs5020891]
相关作者
相关机构