利用MODIS多通道反照率产品估算OCO-2氧气A吸收带陆表反照率方法
A method for estimating the land surface albedo of OCO-2 oxygen A-band based on MODIS/MCD43C3
- 2023年27卷第4期 页码:1009-1020
纸质出版日期: 2023-04-07
DOI: 10.11834/jrs.20231333
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-04-07 ,
扫 描 看 全 文
杨洁,李四维,王庆鑫.2023.利用MODIS多通道反照率产品估算OCO-2氧气A吸收带陆表反照率方法.遥感学报,27(4): 1009-1020
Yang J,Li S W and Wang Q X. 2023. A method for estimating the land surface albedo of OCO-2 oxygen A-band based on MODIS/MCD43C3. National Remote Sensing Bulletin, 27(4):1009-1020
在基于OCO-2卫星氧气A吸收带观测的云反演中,陆表反射是重要的干扰因素,其强度主要由陆表反照率决定。然而,目前尚无卫星产品能提供OCO-2云反演所需的氧气A吸收带陆表反照率,为此本文提出基于MODIS多通道黑空/白空反照率的OCO-2氧气A吸收带陆表反照率估算方法。该方法顾及地表覆盖类型对波段间转换陆表反照率的影响,在不同时间和不同空间上测试的相关系数均超过0.93,均方根误差为0.026。其中,MODIS反照率数据的质量是决定多通道模型转换精度的最重要因素。当输入最佳质量的MODIS反照率时,OCO-2氧气A吸收带陆表反照率估值的均方根误差略优于0.02,随着MODIS反照率数据质量的下降,估值的均方根误差逐渐增大至超过0.05。
Land surface reflection depends on land surface albedo and interferes with the retrieval of cloud geometrical thickness from OCO-2 oxygen A-band observations due to its second-strongest reflection after the cloud. However
no product can provide the land surface albedo of the OCO-2 oxygen A-band required for the retrieval. Therefore
the accurate estimation of land surface albedo is necessary and beneficial to the retrieval quality.
In this study
we proposed a method for estimating land surface albedo in the oxygen A-band from multichannel black/white albedos from MODIS/MCD43C3 products. Although the estimation (MODIS→OCO-2) is related to land cover type
the comparison based on Shannon entropy proved that the multichannel albedo data contains the type information and is sufficient to achieve the same accuracy as land cover-type estimation. In addition
we implement the estimation model by BP neural network
and the accuracy is consistent with that of the analysis based on the Shannon entropy.
We verified the multichannel-based estimation model by tests in different times and spaces. Its correlation coefficients were all over 0.93
and the root-mean-squared errors were 0.026. In addition
the multichannel-based model was always superior to the single-channel linear model on all land cover types
whether applied to the best-performing type of barren or sparsely vegetated land or the worse-performing type of snow and ice. The quality of MODIS albedo data is the most important for the accuracy of estimation. The root-mean-squared error with the best inputs was slightly better than 0.02 and increased to more than 0.05 as the quality of the inputs decreased.
The method of estimating the land surface albedo in the OCO-2 oxygen A-band from MODIS multichannel black/white albedo data is feasible and can resist the disturbance caused by unknown land cover type. The estimation accuracy depends on the quality of the input MODIS albedo data.
遥感陆表反照率地表覆盖类型OCO-2氧气A吸收带云反演
remote sensingland surface albedoland cover typeOCO-2oxygen A-bandcloud retrieval
Bacour C, Bréon F M, Gonzalez L, Price I, Muller J P and Straume A G. 2020. Simulating multi-directional narrowband reflectance of the earth’s surface using ADAM (A surface reflectance database for ESA’s earth observation missions). Remote Sensing, 12(10): 1679 [DOI: 10.3390/rs12101679http://dx.doi.org/10.3390/rs12101679]
Claverie M, Ju J C, Masek J G, Dungan J L, Vermote E F, Roger J C, Skakun S V and Justice C. 2018. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sensing of Environment, 219: 145-161 [DOI: 10.1016/j.rse.2018.09.002http://dx.doi.org/10.1016/j.rse.2018.09.002]
Dubovik O, Herman M, Holdak A, Lapyonok T, Tanré D, Deuzé J L, Ducos F, Sinyuk A and Lopatin A. 2011. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmospheric Measurement Techniques, 4(5): 975-1018 [DOI: 10.5194/amt-4-975-2011http://dx.doi.org/10.5194/amt-4-975-2011]
Friedl M A, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A and Huang X M. 2010. MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114(1): 168-182 [DOI: 10.1016/j.rse.2009.08.016http://dx.doi.org/10.1016/j.rse.2009.08.016]
Ge B Y, Li Z Q, Liu L, Yang L K, Chen X F, Hou W Z, Zhang Y, Li D H, Li L and Qie L L. 2019. A dark target method for Himawari-8/AHI aerosol retrieval: application and validation. IEEE Transactions on Geoscience and Remote Sensing, 57(1): 381-394 [DOI: 10.1109/tgrs.2018.2854743http://dx.doi.org/10.1109/tgrs.2018.2854743]
Hansen M C, Defries R S, Townshend J R G and Sohlberg R. 2000. Global land cover classification at 1km spatial resolution using a classification tree approach. International Journal of Remote Sensing, 21(6/7): 1331-1364 [DOI: 10.1080/014311600210209http://dx.doi.org/10.1080/014311600210209]
Heckel A, Kim S W, Frost G J, Richter A, Trainer M and Burrows J P. 2011. Influence of low spatial resolution a priori data on tropospheric NO2 satellite retrievals. Atmospheric Measurement Techniques, 4(9): 1805-1820 [DOI: 10.5194/amt-4-1805-2011http://dx.doi.org/10.5194/amt-4-1805-2011]
Herman J R and Celarier E A. 1997. Earth surface reflectivity climatology at 340-380 nm from TOMS data. Journal of Geophysical Research: Atmospheres, 102(D23): 28003-28011 [DOI: 10.1029/97jd02074http://dx.doi.org/10.1029/97jd02074]
Justice C O, Townshend J R G, Vermote E F, Masuoka E, Wolfe R E, Saleous N, Roy D P and Morisette J T. 2002. An overview of MODIS Land data processing and product status. Remote Sensing of Environment, 83(1/2): 3-15 [DOI: 10.1016/s0034-4257(02)00084-6http://dx.doi.org/10.1016/s0034-4257(02)00084-6]
Kaufman Y J, Tanré D, Remer L A, Vermote E F, Chu A and Holben B N. 1997. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. Journal of Geophysical Research: Atmospheres, 102(D14): 17051-17067 [DOI: 10.1029/96jd03988http://dx.doi.org/10.1029/96jd03988]
Kleipool Q L, Dobber M R, de Haan J F and Levelt P F. 2008. Earth surface reflectance climatology from 3 years of OMI data. Journal of Geophysical Research: Atmospheres, 113(D18): D18308 [DOI: 10.1029/2008jd010290http://dx.doi.org/10.1029/2008jd010290]
Koelemeijer R B A, de Haan J F and Stammes P. 2003. A database of spectral surface reflectivity in the range 335-772 nm derived from 5.5 years of GOME observations. Journal of Geophysical Research: Atmospheres, 108(D2): 4070 [DOI: 10.1029/2002jd002429http://dx.doi.org/10.1029/2002jd002429]
Liang S L, Bai R, Chen X N, Cheng J, Fan W J, He T, Jia K, Jiang B, Jiang L M, Jiao Z T, Liu Y B, Ni W J, Qiu F, Song L L, Sun L, Tang B H, Wen J G, Wu G P, Xie D H, Yao Y J, Yuan W P, Zhang Y G, Zhang Y Z, Zhang Y T, Zhang X T, Zhao T J and Zhao X. 2020. Review of China’s land surface quantitative remote sensing development in 2019. Journal of Remote Sensing, 24(6): 618-671
梁顺林, 白瑞, 陈晓娜, 程洁, 范闻捷, 何涛, 贾坤, 江波, 蒋玲梅, 焦子锑, 刘元波, 倪文俭, 邱凤, 宋柳霖, 孙林, 唐伯惠, 闻建光, 吴桂平, 谢东辉, 姚云军, 袁文平, 张永光, 张玉珍, 张云腾, 张晓通, 赵天杰, 赵祥. 2020. 2019年中国陆表定量遥感发展综述. 遥感学报, 24(6): 618-671 [DOI: 10.11834/jrs.20209476http://dx.doi.org/10.11834/jrs.20209476]
Liang S L, Cheng J, Jia K, Jiang B, Liu Q, Liu S H, Xiao Z Q, Xie X H and Yao Y J. 2016. Recent progress in land surface quantitative remote sensing. Journal of Remote Sensing, 20(5): 875-898
梁顺林, 程洁, 贾坤, 江波, 刘强, 刘素红, 肖志强, 谢先红, 姚云军. 2016. 陆表定量遥感反演方法的发展新动态. 遥感学报, 20(5): 875-898 [DOI: 10.11834/jrs.20166258http://dx.doi.org/10.11834/jrs.20166258]
Lorente A, Boersma K F, Stammes P, Tilstra L G, Richter A, Yu H, Kharbouche S and Muller J P. 2018. The importance of surface reflectance anisotropy for cloud and NO2 retrievals from GOME-2 and OMI. Atmospheric Measurement Techniques, 11(7): 4509-4529 [DOI: 10.5194/amt-11-4509-2018http://dx.doi.org/10.5194/amt-11-4509-2018]
Lotsch A, Tian Y, Friedl M A and Myneni R B. 2003. Land cover mapping in support of LAI and FPAR retrievals from EOS-MODIS and MISR: classification methods and sensitivities to errors. International Journal of Remote Sensing, 24(10): 1997-2016 [DOI: 10.1080/01431160210154858http://dx.doi.org/10.1080/01431160210154858]
Loveland T R and Belward A S. 1997. The IGBP-DIS global 1 km land cover data set, DISCover: first results. International Journal of Remote Sensing, 18(15): 3289-3295 [DOI: 10.1080/014311697217099http://dx.doi.org/10.1080/014311697217099]
Lyapustin A, Wang Y J, Korkin S and Huang D. 2018. MODIS collection 6 MAIAC algorithm. Atmospheric Measurement Techniques, 11(10): 5741-5765 [DOI: 10.5194/amt-11-5741-2018http://dx.doi.org/10.5194/amt-11-5741-2018]
Nanda S, de Graaf M, Veefkind J P, Sneep M, ter Linden M, Sun J Y T and Levelt P F. 2020. A first comparison of TROPOMI aerosol layer height (ALH) to CALIOP data. Atmospheric Measurement Techniques, 13(6): 3043-3059 [DOI: 10.5194/amt-13-3043-2020http://dx.doi.org/10.5194/amt-13-3043-2020]
O’Dell C W, Eldering A, Wennberg P O, Crisp D, Gunson M R, Fisher B, Frankenberg C, Kiel M, Lindqvist H, Mandrake L, Merrelli A, Natraj V, Nelson R R, Osterman G B, Payne V H, Taylor T E, Wunch D, Drouin B J, Oyafuso F, Chang A, McDuffie J, Smyth M, Baker D F, Basu S, Chevallier F, Crowell S M R, Feng L, Palmer P I, Dubey M, García O E, Griffith D W T, Hase F, Iraci L T, Kivi R, Morino I, Notholt J, Ohyama H, Petri C, Roehl C M, Sha M K, Strong K, Sussmann R, Te Y, Uchino O and Velazco V A. 2018. Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm. Atmospheric Measurement Techniques, 11(12): 6539-6576 [DOI: 10.5194/amt-11-6539-2018http://dx.doi.org/10.5194/amt-11-6539-2018]
Rahman H, Pinty B and Verstraete M M. 1993. Coupled surface-atmosphere reflectance (CSAR) model: 2. Semiempirical surface model usable with NOAA advanced very high resolution radiometer data. Journal of Geophysical Research: Atmospheres, 98(D11): 20791-20801 [DOI: 10.1029/93jd02072http://dx.doi.org/10.1029/93jd02072]
Russell A R, Perring A E, Valin L C, Bucsela E J, Browne E C, Wooldridge P J and Cohen R C. 2011. A high spatial resolution retrieval of NO2 column densities from OMI: method and evaluation. Atmospheric Chemistry and Physics, 11(16): 8543-8554 [DOI: 10.5194/acp-11-8543-2011http://dx.doi.org/10.5194/acp-11-8543-2011]
Shannon C E. 1997. The mathematical theory of communication. 1963. MD Computing, 14(4): 306-317
Shi S Y, Cheng T H, Gu X F, Chen H, Guo H, Wang Y, Bao F W, Xu B R, Wang W N, Zuo X, Meng C and Zhang X C. 2017. Synergy of MODIS and AATSR for better retrieval of aerosol optical depth and land surface directional reflectance. Remote Sensing of Environment, 195: 130-141 [DOI: 10.1016/j.rse.2017.04.010http://dx.doi.org/10.1016/j.rse.2017.04.010]
Strahler A H, Muller J P, Lucht W, Schaaf C B, Tsang T, Gao F, Li X W, Lewis P and Barnsley M J. 2021. MODIS BRDF/albedo product: algorithm theoretical basis document version 5.0[EB/OL]. https://modis.gsfc.nasa.gov/data/atbd/atbd_mod09.pdfhttps://modis.gsfc.nasa.gov/data/atbd/atbd_mod09.pdf
Tilstra L G, Tuinder O N E, Wang P and Stammes P. 2017. Surface reflectivity climatologies from UV to NIR determined from Earth observations by GOME-2 and SCIAMACHY. Journal of Geophysical Research: Atmospheres, 122(7): 4084-4111 [DOI: 10.1002/2016jd025940http://dx.doi.org/10.1002/2016jd025940]
Veefkind J P, de Haan J F, Brinksma E J, Kroon M and Levelt P F. 2006. Total ozone from the Ozone Monitoring Instrument (OMI) using the DOAS technique. IEEE Transactions on Geoscience and Remote Sensing, 44(5): 1239-1244 [DOI: 10.1109/tgrs.2006.871204http://dx.doi.org/10.1109/tgrs.2006.871204]
Wang P, Stammes P, van der A R, Pinardi G and van Roozendael M. 2008. FRESCO+: an improved O2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals. Atmospheric Chemistry and Physics, 8(21): 6565-6576 [DOI: 10.5194/acp-8-6565-2008http://dx.doi.org/10.5194/acp-8-6565-2008]
Wang Q X, Li S W, Zeng Q L, Sun L, Yang J and Lin H. 2020. Retrieval and validation of AOD from Himawari-8 data over Bohai Rim Region, China. Remote Sensing, 12(20): 3425 [DOI: 10.3390/rs12203425http://dx.doi.org/10.3390/rs12203425]
Wang Z S, Schaaf C B, Sun Q S, Shuai Y M and Román M O. 2018. Capturing rapid land surface dynamics with Collection V006 MODIS BRDF/NBAR/Albedo(MCD43) products. Remote Sensing of Environment, 207: 50-64 [DOI: 10.1016/j.rse.2018.02.001http://dx.doi.org/10.1016/j.rse.2018.02.001]
Worden J R, Doran G, Kulawik S, Eldering A, Crisp D, Frankenberg C, O’Dell C and Bowman K. 2017. Evaluation and attribution of OCO-2 XCO2 uncertainties. Atmospheric Measurement Techniques, 10(7): 2759-2771 [DOI: 10.5194/amt-10-2759-2017http://dx.doi.org/10.5194/amt-10-2759-2017]
Yang J, Li S W, Gong W, Min Q L, Mao F Y and Pan Z X. 2021. A fast cloud geometrical thickness retrieval algorithm for single-layer marine liquid clouds using OCO-2 oxygen A-band measurements. Remote Sensing of Environment, 256: 112305 [DOI: 10.1016/j.rse.2021.112305http://dx.doi.org/10.1016/j.rse.2021.112305]
Zeng Z C, Chen S H, Natraj V, Le T H, Xu F, Merrelli A, Crisp D, Sander S P and Yung Y L. 2020. Constraining the vertical distribution of coastal dust aerosol using OCO-2 O2 A-band measurements. Remote Sensing of Environment, 236: 111494 [DOI: 10.1016/j.rse.2019.111494http://dx.doi.org/10.1016/j.rse.2019.111494]
Zhang H K, Roy D P, Yan L, Li Z B, Huang H Y, Vermote E, Skakun S and Roger J C. 2018. Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences. Remote Sensing of Environment, 215: 482-494 [DOI: 10.1016/j.rse.2018.04.031http://dx.doi.org/10.1016/j.rse.2018.04.031]
相关作者
相关机构