FY-3C/VIRR热红外通道精细化再定标模型的构建和精度验证
Construction and validation of FY-3C/VIRR infrared window channel refinement re-calibration model
- 2023年27卷第10期 页码:2307-2317
纸质出版日期: 2023-10-07
DOI: 10.11834/jrs.20231589
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-10-07 ,
扫 描 看 全 文
徐寒列,胡秀清,徐娜,张里阳,漆成莉.2023.FY-3C/VIRR热红外通道精细化再定标模型的构建和精度验证.遥感学报,27(10): 2307-2317
Xu H L, Hu X Q, Xu N, Zhang L Y and Qi C L. 2023. Construction and validation of FY-3C/VIRR infrared window channel refinement re-calibration model. National Remote Sensing Bulletin, 27(10):2307-2317
风云三号可见光红外扫描辐射计(FY-3/VIRR)自2008年FY-3A发射以来,在轨提供了十余年的对地观测数据。这些数据对于大气、地表和环境产品反演、天气和气候变化研究具有重要意义。本文分析了FY-3/VIRR热红外通道的偏差特征,针对定标偏差的昼夜差异和季节变化,结合业务定标模型初步确认误差的主要来源,并分别对星上定标模型和星上黑体辐射模型进行优化,构建热红外通道精细化再定标模型。FY-3/VIRR热红外通道再定标模型直接采用二次定标方程进行星上定标,并考虑了仪器环境辐射影响。以国内外公认的高精度红外大气探测仪器(IASI)为参考仪器,基于GSICS推荐的近同时星下点观测(SNO)匹配样本,实现了精细化再定标模型的参数确定。结果表明,该精细化再定标模型对VIRR热红外通道的系统性偏差,以及偏差的昼夜差异和季节性变化均有明显的修正效果,利用精细化再定标模型重定标后的月平均偏差均在±0.3 K以内;以2018年为例,冬季昼夜差异由业务定标的0.4 K左右减小至小于0.1 K。
FY-3 visible infrared scanning radiometer (FY-3/VIRR) has provided Earth-observation data in orbit for more than 10 years since the launch of FY-3A in 2008. These data are important for atmospheric
surface
and environmental product inversion
weather
and climate change research. In this study
the calibration bias characteristics of FY-3/VIRR thermal infrared channel were analyzed
and the main sources of error were preliminarily identified in combination with the operational calibration model in day-night difference and seasonal variation of the operational calibration bias. In addition
the on-board calibration model and the on-board blackbody radiation model were optimized to construct the fine re-calibration model of the thermal infrared channel. In the linear calibration model plus nonlinear correction adopted by the FY-3/VIRR infrared channel
the quadratic term is related to the calibrated blackbody radiation. When the satellite is in orbit
the temperature change of the blackbody causes change in the quadratic term coefficient. As a result
the shape of the quadratic response of the infrared channel is changed. When the blackbody temperature changes
the quadratic term coefficient is changed
thereby introducing calibration deviation. In addition
the blackbody radiation on the infrared channel is calculated using the equivalent brightness temperature coefficient of the blackbody obtained from the pre-launch test. In fact
the radiation in the blackbody observation path is reflected in a set of polynomial fitting coefficients. This fitting process is based on the pre-launch vacuum test
and the on-orbit application results in calibration deviation. The FY-3/VIRR re-calibration model of thermal infrared channel directly uses quadratic calibration equation for on-board calibration model and considers the influence of instrument environmental radiation. The blackbody radiation model on the planet is reconstructed by considering the blackbody temperature as the proxy ambient temperature given that traditional instruments lack temperature measurement points on the planet. Based on the matching samples of Simultaneous Nadir Observation (SNO) recommended by GSICS
The parameters of the refined re-calibration model were determined using the internationally recognized high-precision Infrared Atmospheric Sounding Interferometer (IASI) as the reference instrument. The results show that the refined re-calibration model has a significant correction effect on the systematic deviation
diurnal difference
and seasonal variation of the operational calibration model
and the monthly mean deviation is within ±0.3K after re-calibration using the refined re-calibration model. In 2018
for example
the difference between day and night in winter decreased from approximately 0.4 K of the service calibration to less than 0.1 K.
可见光红外扫描辐射计(VIRR)红外定标星上定标精细化定标模型再定标星上黑体辐射模型
Visible and Infra-Red Radiometer (VIRR)Infrared calibrationon-board calibrationrefinement calibration modelre-calibrationonboard blackbody radiance model
Aumann H H, Pagano T S. Using AIRS and IASI data to evaluate absolute radiometric accuracy and stability for climate applications. Atmospheric and Environmental Remote Sensing Data Processing and Utilization IV: Readiness for GEOSS II. SPIE, 2008, 7085: 16-20.
Blumstein D , Chalon G , Carlier T ,Buil C,Hebert P,Maciaszek T,Ponce G,Phulpin T,Tournier B and Simeoni D. 2004. IASI instrument: technical overview and measured performances.Proceedings of SPIE - The International Society for Optical Engineering, 2004, 5543[DOI:10.1117/12.560907http://dx.doi.org/10.1117/12.560907]
Blumstein D, Tournier B, Cayla F R, Phulpin T, Fjortoft R, Buil C and Ponce G. 2007. In-flight performance of the infrared atmospheric sounding interferometer (IASI) on METOP-A//Proceedings Volume 6684, Atmospheric and Environmental Remote Sensing Data Processing and Utilization III: Readiness for GEOSS. San Diego: SPIE: 103-114 [DOI: 10.1117/12.734162http://dx.doi.org/10.1117/12.734162]
Brown J W, Brown O B and Evans R H. 1993. Calibration of advanced very high resolution radiometer infrared channels: a new approach to nonlinear correction. Journal of Geophysical Research: Oceans, 98(C10): 18257-18268 [DOI: 10.1029/93JC01638http://dx.doi.org/10.1029/93JC01638]
Cao C Y, Sullivan J, Maturi E and Sapper J. 2004. The effect of orbit drift on the calibration of the 3.7µm channel of the AVHRR onboard NOAA-14 and its impact on night-time sea surface temperature retrievals. International Journal of Remote Sensing, 25(5): 975-986 [DOI: 10.1080/0143116031000095899http://dx.doi.org/10.1080/0143116031000095899]
Cao C Y, Weinreb M and Sullivan J. 2001. Solar contamination effects on the infrared channels of the advanced very high resolution radiometer (AVHRR). Journal of Geophysical Research: Atmospheres, 106(D24): 33463-33469 [DOI: 10.1029/2001jd001051http://dx.doi.org/10.1029/2001jd001051]
Cao C Y, Wang W, Blonski S and Zhang B. 2017. Radiometric traceability diagnosis and bias correction for the Suomi NPP VIIRS long‐wave infrared channels during blackbody unsteady states. Journal of Geophysical Research: Atmospheres, 122(10), 5285-5297 [DOI:10.1002/2017JD026590http://dx.doi.org/10.1002/2017JD026590]
Chang T J, Wu X Q and Weng F Z. 2017. Modeling thermal emissive bands radiometric calibration impact with application to AVHRR. Journal of Geophysical Research: Atmospheres, 122(5): 2831-2843 [DOI: 10.1002/2016JD025601http://dx.doi.org/10.1002/2016JD025601]
Larar A M, Smith W L, Zhou D K, Liu X, Revercomb H, Taylor J P, Newman S M and Schlüssel P. 2010. IASI spectral radiance validation inter-comparisons: case study assessment from the JAIVEx field campaign. Atmospheric Chemistry and Physics, 10(2): 411-430 [DOI: 10.5194/acp-10-411-2010http://dx.doi.org/10.5194/acp-10-411-2010]
McIntire J, Moyer D, Oudrari H and Xiong X X. 2019. Pre-launch radiometric characterization of JPSS-2 VIIRS thermal emissive bands. Remote Sensing, 11(6): 732 [DOI: 10.3390/rs11060732http://dx.doi.org/10.3390/rs11060732]
Mittaz J and Harris A. 2011. A physical method for the calibration of the AVHRR/3 thermal IR channels. Part II: an in-orbit comparison of the AVHRR longwave thermal IR channels on board MetOp-A with IASI. Journal of Atmospheric and Oceanic Technology, 28(9): 1072-1087 [DOI: 10.1175/2011JTECHA1517.1http://dx.doi.org/10.1175/2011JTECHA1517.1]
Mittaz J P D, Harris A R and Sullivan J T. 2009. A physical method for the calibration of the AVHRR/3 thermal IR channels 1: the prelaunch calibration data. Journal of Atmospheric and Oceanic Technology, 26(5): 996-1019 [DOI: 10.1175/2008JTECHO636.1http://dx.doi.org/10.1175/2008JTECHO636.1]
Niu X H, Zhou J G, Chen S S, Wang X H, Ding L and Hu X Q. 2015. Simulation and suppression of solar on-orbit pollution of FY-3/MERSI onboard blackbody. Optics and Precision Engineering, 23(7): 1822-1828
钮新华, 周巨广, 陈帅帅, 王向华, 丁雷, 胡秀清. 2015. FY-3/中分辨率光谱成像仪星上黑体的在轨太阳污染模拟与抑制. 光学精密工程, 23(7): 1822-1828 [DOI: 10.3788/OPE.20152307.1822http://dx.doi.org/10.3788/OPE.20152307.1822]
Walton C C, Sullivan J T, Rao C R N and Weinreb M P. 1998. Corrections for detector nonlinearities and calibration inconsistencies of the infrared channels of the advanced very high resolution radiometer. Journal of Geophysical Research: Oceans, 103(C2): 3323-3337 [DOI: 10.1029/97jc02018http://dx.doi.org/10.1029/97jc02018]
Weinreb M P, Hamilton G, Brown S and Koczor R J. 1990. Nonlinearity corrections in calibration of advanced very high resolution radiometer infrared channels. Journal of Geophysical Research: Oceans, 95(C5): 7381-7388 [DOI: 10.1029/JC095iC05p07381http://dx.doi.org/10.1029/JC095iC05p07381]
Wu A, Wang Z, Li Y, Madhavan S, Wenny B N, Chen N and Xiong X. 2014. Adjusting Aqua MODIS TEB nonlinear calibration coefficients using iterative solution. Earth Observing Missions and Sensors: Development, Implementation, and Characterization III (Vol. 9264, pp. 156-166). SPIE [DOI:10.1117/12.2069246http://dx.doi.org/10.1117/12.2069246]
Xiong X, Chiang K, Chen N, Xiong S, Barnes W L and Guenther B. 2006. Results and lessons from MODIS thermal emissive bands calibration: pre-launch to on-orbit//Proceedings Volume 6296, Earth Observing Systems XI. San Diego: SPIE: 85-96 [DOI: 10.1117/12.680992http://dx.doi.org/10.1117/12.680992]
Xu H L, Hu X Q, Xu N and Min M. 2015. Discrimination and correction for solar contamination on mid-infrared band of FY-3C/VIRR. Optics and Precision Engineering, 23(7): 1874-1879
徐寒列, 胡秀清, 徐娜, 闵敏. 2015. FY-3C/可见光红外扫描辐射计中红外通道太阳污染的识别和修正. 光学精密工程, 23(7): 1874-1879 [DOI: 10.3788/OPE.20152307.1874http://dx.doi.org/10.3788/OPE.20152307.1874]
Xu N, Chen L, Hu X Q, Zhang L Y and Zhang P. 2014. Assessment and correction of on-orbit radiometric calibration for FY-3 VIRR thermal infrared channels. Remote Sensing, 6(4): 2884-2897 [DOI: 10.3390/rs6042884http://dx.doi.org/10.3390/rs6042884]
Xu N, Niu X H, Hu X Q, Wang X H, Wu R H, Chen S S, Chen L, Sun L, Ding L and Zhang, P. 2018. Prelaunch calibration and radiometric performance of the advanced MERSI II on FengYun-3D. IEEE transactions on geoscience and remote sensing, 56(8), 4866-4875
Yang J and Dong C H. 2011. Products and Applications of New Generation Fengyun Polar-Orbit Meteorological Satellites. Beijing: Science Press: 44
杨军, 董超华. 2011. 新一代风云极轨气象卫星业务产品及应用. 北京: 科学出版社: 44
Zhao Y H, Wang H, Li Y F, Li Y and Zhang X Q. 2021. Research on high-precision radiation calibration technology of long-wave infrared space optical remote sensor. National Remote Sensing Bulletin, 25(8): 1646-1654
赵艳华, 王浩, 李云飞, 李岩, 张秀茜. 2021. 长波红外空间光学遥感器高精度辐射定标技术. 遥感学报, 25(8): 1646-1654 [DOI: 10.11834/jrs.20211225http://dx.doi.org/10.11834/jrs.20211225]
Zhu J B, Hu X Q, Yang L K, Xu H L, Xu N and Zhang P. 2021. Study on the correction of sunlight pollution in mid-infrared image of FY-3C/VIRR. National Remote Sensing Bulletin, 25(3): 803-815
朱吉彪, 胡秀清, 杨磊库, 徐寒列, 徐娜, 张鹏. 2021. FY-3C/VIRR中红外图像太阳光污染订正. 遥感学报, 25(3): 803-815 [DOI: 10.11834/jrs.20209474http://dx.doi.org/10.11834/jrs.20209474]
相关作者
相关机构