SWOT卫星对青海湖的水位监测潜力研究
Exploring the potential of SWOT for water level monitoring in the Qinghai Lake
- 2023年27卷第8期 页码:1888-1898
纸质出版日期: 2023-08-07
DOI: 10.11834/jrs.20231628
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-08-07 ,
扫 描 看 全 文
熊景华,郭生练,姜丽光,尹家波,王俊.2023.SWOT卫星对青海湖的水位监测潜力研究.遥感学报,27(8): 1888-1898
Xiong J H,Guo S L,Jiang L G,Yin J B and Wang J. 2023. Exploring the potential of SWOT for water level monitoring in the Qinghai Lake. National Remote Sensing Bulletin, 27(8):1888-1898
青藏高原湖泊群水位变化是反映全球气候变化的重要指标。在实测数据稀缺和现有卫星时空覆盖范围低的限制下,基于雷达干涉模式的新一代SWOT(Surface Water and Ocean Topography)卫星可为全球内陆水体提供高时空分辨率和高精度的水位信息,是对传统观测形式的有力补充。在卫星发射之前探讨其监测潜力具有重要意义。本研究以青藏高原最大的青海湖为例,使用CNES SWOT水文模拟器,模拟2010年—2018年类SWOT水位序列。通过分别采用实测水位、光学水位和雷达水位作为SWOT模拟器驱动,探讨了SWOT模拟器模拟精度对输入驱动的敏感性,并在多个尺度下评价了其模拟表现。结果表明:多种驱动数据情景下,类SWOT水位均可在季节和全年尺度上捕捉青海湖水位变化过程,相关系数和纳什效率系数分别在0.9—1.0和0.8—0.99变化;且可较好监测到青海湖水位长期变化趋势。SWOT具有监测青藏高原湖泊群水位动态的巨大潜力,能够有效观测湖泊水位变化。
The water level changes in the lake groups on the Qinghai‒Tibetan Plateau is crucial for understanding global climate change and melting glaciers regionally. However
in-situ measurements are still lacking due to remote locations and material requirements. The current in-orbit optical satellites as well as radar and laser altimetry satellites have a relatively coarse spatiotemporal resolution and poor retrieval accuracies
both of which can be addressed in the future Surface Water and Ocean Topography (SWOT) mission. Therefore
the main objective of our study is to assess the water level monitoring potential of SWOT for the largest lake in China
that is
the Qinghai Lake in the Qinghai‒Tibetan Plateau.
This study obtained SWOT-like water level time series covering the years 2010 to 2018 for the Qinghai Lake from in-situ measurements
the optical altimetry dataset
and radar altimetry products by using the CNES SWOT Hydrology Toolbox. A systematical performance evaluation of SWOT-like lake level was then conducted by comparing this level with the reference height. SWOT-like water volume time series under different input scenarios for the Qinghai Lake were estimated based on its hypsometric curve and were subsequently validated using the results derived from the Gravity Recovery and Climate Experiment (GRACE) mission and the WaterGAP global hydrological model (WGHM).
In general
the SWOT-like water level time series can capture the seasonal and annual water level variations with an r/NSE ranging from 0.9 to 1.0 and from 0.8 to 0.99
respectively. Meanwhile
the SWOT-like lake level time series accurately demonstrate the long-term trends of water level in Qinghai Lake for the years 2010 to 2018 at various scales. The SWOT-inferred water volume changes under multiple forcing scenarios show change patterns that are comparable with the GRACE and WGHM results.
The SWOT-like water level for the Qinghai Lake for the years 2010 to 2018 shows satisfactory accuracy at both seasonal and annual scales as revealed in comparisons with in-situ measurements
the optical altimetry dataset
and the radar altimetry product. The patterns of the SWOT-inferred water volume changes are also similar to the GRACE and WGHM results
thereby indicating the great water level and volume monitoring potential of the future SWOT mission. In our future work
we will derive time-varying water extent maps of Qinghai Lake by using multi-source optical imageries
including Landsat
Sentinel
and Gaofen series satellites. We also plan to carry further experiments for all lakes (
>
1 km
2
) in the Qinghai‒Tibetan Plateau to assess the large-scale lake level monitoring potential of SWOT.
SWOT卫星青藏高原青海湖水位监测遥感测高
SWOTQinghai-Tibetan PlateauQinghai Lakewater level monitoringremote sensingaltimetry
Biancamaria S, Lettenmaier D P and Pavelsky T M. 2016. The SWOT mission and its capabilities for land hydrology. Surveys in Geophysics, 37(2): 307-337 [DOI: 10.1007/s10712-015-9346-yhttp://dx.doi.org/10.1007/s10712-015-9346-y]
Bonnema M and Hossain F. 2019. Assessing the potential of the Surface Water and Ocean Topography mission for reservoir monitoring in the Mekong River basin. Water Resources Research, 55(1): 444-461 [DOI: 10.1029/2018WR023743http://dx.doi.org/10.1029/2018WR023743]
Chen J L, Wilson C R, Tapley B D, Save H and Cretaux J F. 2017. Long-term and seasonal Caspian Sea level change from satellite gravity and altimeter measurements. Journal of Geophysical Research: Solid Earth, 122(3): 2274-2290 [DOI: 10.1002/2016JB013595http://dx.doi.org/10.1002/2016JB013595]
Cheng J, Liu C H, Liu K, Wu J S, Fan C Y, Xue B, Ma R H and Song C Q. 2021. Potential impact of the dramatical expansion of Lake Qinghai on the habitat facilities and grassland since 2004. Journal of Lake Sciences, 33(3): 922-934
程俭, 刘昌华, 刘凯, 武建双, 范晨雨, 薛滨, 马荣华, 宋春桥. 2021. 2004年以来青海湖快速扩张对人居设施与草地的潜在影响. 湖泊科学, 33(3): 922-934 [DOI: 10.18307/2021.0325http://dx.doi.org/10.18307/2021.0325]
Crétaux J F, Abarca-del-Río R, Bergé-Nguyen M, Arsen A, Drolon V, Clos G and Maisongrande P. 2016. Lake volume monitoring from space. Surveys in Geophysics, 37(2): 269-305 [DOI: 10.1007/s10712-016-9362-6http://dx.doi.org/10.1007/s10712-016-9362-6]
Du J N, Li Q J, Liu X S and Wen D P. 2020. Hydrological characteristics of Qinghai Lake, 1956—2017. Journal of Hydroecology, 41(4): 27-33
杜嘉妮, 李其江, 刘希胜, 温得平. 2020. 青海湖1956年—2017年水文变化特征分析. 水生态学杂志, 41(4): 27-33 [DOI: 10.15928/j.1674-3075.2020.04.004http://dx.doi.org/10.15928/j.1674-3075.2020.04.004]
Elmer N J, Hain C, Hossain F, Desroches D and Pottier C. 2020. Generating proxy SWOT water surface elevations using WRF-Hydro and the CNES SWOT hydrology simulator. Water Resources Research, 56(8): e2020WR027464 [DOI: 10.1029/2020WR027464http://dx.doi.org/10.1029/2020WR027464]
Huang Q, Long D, Du M D, Han Z Y and Han P F. 2020. Daily continuous river discharge estimation for ungauged basins using a hydrologic model calibrated by satellite altimetry: Implications for the SWOT mission. Water Resources Research, 56(7): e2020WR027309 [DOI: 10.1029/2020WR027309http://dx.doi.org/10.1029/2020WR027309]
Hwang C, Cheng Y S, Han J C, Kao R, Huang C Y, Wei S H and Wang H H. 2016. Multi-decadal monitoring of lake level changes in the Qinghai-Tibet Plateau by the TOPEX/Poseidon-Family altimeters: climate implication. Remote Sensing, 8(6): 446 [DOI: 10.3390/rs8060446http://dx.doi.org/10.3390/rs8060446]
Ji Q, Yang J P and Chen H J. 2018. Comprehensive analysis of the precipitation changes over the Tibetan Plateau during 1961-2015. Journal of Glaciology and Geocryology, 40(6): 1090-1099
冀钦, 杨建平, 陈虹举. 2018. 1961-2015年青藏高原降水量变化综合分析. 冰川冻土, 40(6): 1090-1099 [DOI: 10.7522/j.issn.1000-0240.2018.0415http://dx.doi.org/10.7522/j.issn.1000-0240.2018.0415]
Jiang L G, Nielsen K, Andersen O B and Bauer-Gottwein P. 2017. Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn mode data. Journal of Hydrology, 544: 109-124 [DOI: 10.1016/j.jhydrol.2016.11.024http://dx.doi.org/10.1016/j.jhydrol.2016.11.024]
Jiang L G, Nielsen K, Andersen O B and Bauer-Gottwein P. 2020. A bigger picture of how the Tibetan lakes have changed over the past decade revealed by CryoSat-2 altimetry. Journal of Geophysical Research: Atmospheres, 125(23): e2020JD033161 [DOI: 10.1029/2020JD033161http://dx.doi.org/10.1029/2020JD033161]
Kleinherenbrink M, Lindenbergh R C and Ditmar P G. 2015. Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms. Journal of Hydrology, 521: 119-131 [DOI: 10.1016/j.jhydrol.2014.11.063http://dx.doi.org/10.1016/j.jhydrol.2014.11.063]
Li X D, Long D, Huang Q, Han P F, Zhao F Y and Wada Y. 2019. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000-2017 using multiple altimetric missions and Landsat-derived lake shoreline positions. Earth System Science Data, 11(4): 1603-1627 [DOI: 10.5194/essd-11-1603-2019http://dx.doi.org/10.5194/essd-11-1603-2019]
Liao J J, Gao L and Wang X M. 2014. Numerical simulation and forecasting of water level for Qinghai Lake using multi-altimeter data between 2002 and 2012. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(2): 609-622 [DOI: 10.1109/JSTARS.2013.2291516http://dx.doi.org/10.1109/JSTARS.2013.2291516]
Liao J J, Xue H and Chen J M. 2020. Monitoring lake level changes on the Tibetan Plateau from 2000 to 2018 using satellite altimetry data. Journal of Remote Sensing, 24(12): 1534-1547
廖静娟, 薛辉, 陈嘉明. 2020. 卫星测高数据监测青藏高原湖泊2010年—2018年水位变化. 遥感学报, 24(12): 1534-1547 [DOI: 10.11834/jrs.20209281http://dx.doi.org/10.11834/jrs.20209281]
Ma N, Szilagyi J, Niu G Y, Zhang Y S, Zhang T, Wang B B and Wu Y H. 2016. Evaporation variability of Nam Co Lake in the Tibetan Plateau and its role in recent rapid lake expansion. Journal of Hydrology, 537: 27-35 [DOI: 10.1016/j.jhydrol.2016.03.030http://dx.doi.org/10.1016/j.jhydrol.2016.03.030]
Ma Y, Xu N, Sun J Y, Wang X H, Yang F L and Li S. 2019. Estimating water levels and volumes of lakes dated back to the 1980s using Landsat imagery and photon-counting lidar datasets. Remote Sensing of Environment, 232: 111287 [DOI: 10.1016/j.rse.2019.111287http://dx.doi.org/10.1016/j.rse.2019.111287]
Ottlé C, Bernus A, Verbeke T, Pétrus K, Yin Z, Biancamaria S, Jost A, Desroches D, Pottier C, Perrin C, de Lavenne A, Flipo N and Rivière A. 2020. Characterization of SWOT water level errors on Seine Reservoirs and La Bassée Gravel Pits: impacts on water surface energy budget modeling. Remote Sensing, 12(18): 2911 [DOI: 10.3390/rs12182911http://dx.doi.org/10.3390/rs12182911]
Pritchard H D. 2017. Asia’s glaciers are a regionally important buffer against drought. Nature, 545(7653): 169-174 [DOI: 10.1038/nature22062http://dx.doi.org/10.1038/nature22062]
Schmied H M, Cáceres D, Eisner S, Flörke M, Herbert C, Niemann C, Peiris T A, Popat E, Portmann F T, Reinecke R, Schumacher M, Shadkam S, Telteu C E, Trautmann T and Döll P. 2021. The global water resources and use model WaterGAP v2.2d: model description and evaluation. Geoscientific Model Development, 14(2): 1037-1079 [DOI: 10.5194/gmd-14-1037-2021http://dx.doi.org/10.5194/gmd-14-1037-2021]
Schwatke C, Dettmering D, Bosch W and Seitz F. 2015. DAHITI‒an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrology and Earth System Sciences, 19(10): 4345-4364 [DOI: 10.5194/hess-19-4345-2015http://dx.doi.org/10.5194/hess-19-4345-2015]
Solander K C, Reager J T and Famiglietti J S. 2016. How well will the surface water and ocean topography (SWOT) mission observe global reservoirs?. Water Resources Research, 52(3): 2123-2140 [DOI: 10.1002/2015WR017952http://dx.doi.org/10.1002/2015WR017952]
Song C Q, Huang B, Ke L H and Richards K S. 2014. Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts. Journal of Hydrology, 514: 131-144 [DOI: 10.1016/j.jhydrol.2014.04.018http://dx.doi.org/10.1016/j.jhydrol.2014.04.018]
Sun Y S, Li Q J, Liu T, Li Y and Yang Y. 2021. Analysis of Qinghai Lake’s water level changes and water balance analysis from 1956 to 2019. Journal of China Hydrology, 41(5): 91-96
孙永寿, 李其江, 刘弢, 李燕, 杨阳. 2021. 青海湖1956年—2019年水位变化原因及水量平衡分析研究. 水文, 41(5): 91-96 [DOI: 10.19797/j.cnki.1000-0852.20200215http://dx.doi.org/10.19797/j.cnki.1000-0852.20200215]
Taube C M. 2000. Instructions for winter lake mapping//Schneider J C, ed. Manual of fisheries survey methods II: With periodic updates. Michigan Department of Natural Resources, Fisheries Special Report 25. ArborAnn, MI: 1-4
Wan W, Long D, Hong Y, Ma Y Z, Yuan Y, Xiao P F, Duan H T, Han Z Y and Gu X F. 2016. A lake data set for the Tibetan Plateau from the 1960s, 2005, and 2014. Scientific Data, 3(1): 160039 [DOI: 10.1038/sdata.2016.39http://dx.doi.org/10.1038/sdata.2016.39]
Wang X W, Gong P, Zhao Y Y, Xu Y, Cheng X, Niu Z G, Luo Z C, Huang H B, Sun F D and Li X W. 2013. Water-level changes in China’s large lakes determined from ICESat/GLAS data. Remote Sensing of Environment, 132: 131-144 [DOI: 10.1016/j.rse.2013.01.005http://dx.doi.org/10.1016/j.rse.2013.01.005]
Xiong J H, Guo S L and Yin J B. 2021. Discharge estimation using integrated satellite data and hybrid model in the midstream Yangtze River. Remote Sensing, 13(12): 2272 [DOI: 10.3390/rs13122272http://dx.doi.org/10.3390/rs13122272]
Xu F L, Zhang G Q, Yi S and Chen W F. 2022. Seasonal trends and cycles of lake-level variations over the Tibetan Plateau using multi-sensor altimetry data. Journal of Hydrology, 604: 127251 [DOI: 10.1016/j.jhydrol.2021.127251http://dx.doi.org/10.1016/j.jhydrol.2021.127251]
Xu Y Y, Li J, Wang J D, Chen J L, Liu Y B, Ni S N, Zhang Z Z and Ke C Q. 2020. Assessing water storage changes of Lake Poyang from multi-mission satellite data and hydrological models. Journal of Hydrology, 590: 125229 [DOI: 10.1016/j.jhydrol.2020.125229http://dx.doi.org/10.1016/j.jhydrol.2020.125229]
Yao X J, Liu S Y, Sun M P, Guo W Q and Zhang X. 2012. Changes of Kusai Lake in Hoh Xil region and causes of its water overflowing. Acta Geographica Sinica, 67(5): 689-698
姚晓军, 刘时银, 孙美平, 郭万钦, 张晓. 2012. 可可西里地区库赛湖变化及湖水外溢成因. 地理学报, 67(5): 689-698 [DOI: 10.11821/xb201205011http://dx.doi.org/10.11821/xb201205011]
Yuan C, Gong P, Zhang H, Guo H and Pan B Z. 2017. Monitoring water level changes from retracked Jason-2 altimetry data: a case study in the Yangtze River, China. Remote Sensing Letters, 8(5): 399-408 [DOI: 10.1080/2150704X.2016.1278309http://dx.doi.org/10.1080/2150704X.2016.1278309]
Zhang G Q. 2018. Changes in lakes on the Tibetan Plateau observed from satellite data and their responses to climate variations. Progress in Geography, 37(2): 214-223
张国庆. 2018. 青藏高原湖泊变化遥感监测及其对气候变化的响应研究进展. 地理科学进展, 37(2): 214-223 [DOI: 10.18306/dlkxjz.2018.02.004http://dx.doi.org/10.18306/dlkxjz.2018.02.004]
Zhang G Q. 2019. The lakes larger than 1km2 in Tibetan Plateau (V2.0) (1970s—2018). National Tibetan Plateau Data Center
张国庆. 2019. 青藏高原大于1平方公里湖泊数据集(V2.0)(1970s—2018). 国家青藏高原科学数据中心 [DOI: 10.11888/Hydro.tpdc.270303http://dx.doi.org/10.11888/Hydro.tpdc.270303]
Zhang G Q, Bolch T, Chen W F and Crétaux J F. 2021. Comprehensive estimation of lake volume changes on the Tibetan Plateau during 1976—2019 and basin-wide glacier contribution. Science of the Total Environment, 772: 145463 [DOI: 10.1016/j.scitotenv.2021.145463http://dx.doi.org/10.1016/j.scitotenv.2021.145463]
Zhang G Q, Chen W F and Xie H J. 2019a. Tibetan Plateau’s Lake level and volume changes from NASA’s ICESat/ICESat-2 and Landsat missions. Geophysical Research Letters, 46(22): 13107-13118 [DOI: 10.1029/2019GL085032http://dx.doi.org/10.1029/2019GL085032]
Zhang G Q, Luo W, Chen W F and Zheng G X. 2019b. A robust but variable lake expansion on the Tibetan Plateau. Science Bulletin, 64(18): 1306-1309 [DOI: 10.1016/j.scib.2019.07.018http://dx.doi.org/10.1016/j.scib.2019.07.018]
Zhang G Q, Wang M M, Zhou T and Chen W F. 2022. Progress in remote sensing monitoring of lake area, water level, and volume changes on the Tibetan Plateau. Journal of Remote Sensing, 26(1): 115-125
张国庆, 王蒙蒙, 周陶, 陈文锋. 2022. 青藏高原湖泊面积、水位与水量变化遥感监测研究进展. 遥感学报, 26(1): 115-125 [DOI: 10.11834/jrs.20221171http://dx.doi.org/10.11834/jrs.20221171]
Zhang G Q, Xie H J, Kang S C, Yi D H and Ackley S F. 2011. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003—2009). Remote Sensing of Environment, 115(7): 1733-1742 [DOI: 10.1016/j.rse.2011.03.005http://dx.doi.org/10.1016/j.rse.2011.03.005]
Zhang G Q, Yao T D, Shum C K, Yi S, Yang K, Xie H J, Feng W, Bolch T, Wang L, Behrangi A, Zhang H B, Wang W C, Xiang Y and Yu J Y. 2017. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophysical Research Letters, 44(11): 5550-5560 [DOI: 10.1002/2017GL073773http://dx.doi.org/10.1002/2017GL073773]
Zhang H Y, Wu Y H, Liu Y J and Guo L N. 2018. Water storage variation of the Qinghai Lake in recent decades based on satellite observation. Progress in Geography, 37(6): 823-832
张洪源, 吴艳红, 刘衍君, 郭立男. 2018. 近20年青海湖水量变化遥感分析. 地理科学进展, 37(6): 823-832 [DOI: 10.18306/dlkxjz.2018.06.009http://dx.doi.org/10.18306/dlkxjz.2018.06.009]
Zhang Y L, Li B Y and Zheng D. 2002. A discussion on the boundary and area of the Tibetan Plateau in China. Geographical Research, 21(1): 1-8
张镱锂, 李炳元, 郑度. 2002. 论青藏高原范围与面积. 地理研究, 21(1): 1-8 [DOI: 10.3321/j.issn:1000-0585.2002.01.001http://dx.doi.org/10.3321/j.issn:1000-0585.2002.01.001]
Zhu L P, Peng P, Zhang G Q, Qiao B J, Liu C, Yang R M and Wang J B. 2020. The role of Tibetan Plateau lakes in surface water cycle under global changes. Journal of Lake Sciences, 32(3): 597-608
朱立平, 彭萍, 张国庆, 乔宝晋, 刘翀, 杨瑞敏, 王君波. 2020. 全球变化下青藏高原湖泊在地表水循环中的作用. 湖泊科学, 32(3): 597-608 [DOI: 10.18307/2020.0301http://dx.doi.org/10.18307/2020.0301]
Zhu W B, Jia S F and Lv A F. 2014. Monitoring the fluctuation of Lake Qinghai using multi-source remote sensing data. Remote Sensing, 6(11): 10457-10482 [DOI: 10.3390/rs61110457http://dx.doi.org/10.3390/rs61110457]
相关作者
相关机构