大气无机氮沉降卫星遥感估算研究进展
Research progress on estimating atmospheric inorganic nitrogen deposition based on satellite observations
- 2023年27卷第8期 页码:1769-1781
纸质出版日期: 2023-08-07
DOI: 10.11834/jrs.20231631
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-08-07 ,
扫 描 看 全 文
张秀英,刘磊,秦佳遥,董佳琦,程苗苗,卢学鹤,丁佳.2023.大气无机氮沉降卫星遥感估算研究进展.遥感学报,27(8): 1769-1781
Zhang X Y,Liu L,Qin J Y,Dong J Q,Cheng M M,Lu X H and Ding J. 2023. Research progress on estimating atmospheric inorganic nitrogen deposition based on satellite observations. National Remote Sensing Bulletin, 27(8):1769-1781
大气无机氮沉降是全球氮循环的重要过程,对生态系统的可持续发展至关重要。监测大气氮沉降主要包括地面站点监测和大气化学传输模型模拟两种方法;但在区域尺度上两种方法获得的氮沉降通量具有较大差异。因此,急需发展新的方法以补充探讨区域尺度大气氮沉降时空分布格局。卫星遥感技术具有监测全球高时空分辨率大气含氮化合物浓度的能力,已应用于区域尺度氮沉降通量估算。本文系统回顾了监测大气NO
2
和NH
3
的主要卫星载荷及其数据特点、基于卫星监测的NO
2
和NH
3
柱浓度开展氮沉降估算的基本原理,大气硝态氮和氨态氮的气体、颗粒物和湿沉降遥感估算模型,中国大气无机氮沉降时空分布格局,并指出了当前基于卫星监测信息开展大气无机氮沉降通量估算研究中存在的不足。
As an important process in the nitrogen (N) cycle
inorganic N deposition from the atmosphere can be observed at ground sites or simulated by an atmospheric Chemical Transport Model (CTM). However
the atmospheric N deposition fluxes obtained by these two methods on a regional scale show huge gaps. The atmospheric NO
2
and NH
3
columns remotely sensed by satellites have the potential to estimate the N depositions with high spatial and temporal resolutions. This study reviewed those sensors that provide atmospheric NO
2
and NH
3
columns and those models that estimate atmospheric inorganic N depositions based on satellite observations.
Several sensors can provide the daily NO
2
and NH
3
columns in the tropospheric atmosphere since 1995
with spatial resolutions ranging from 7×3.5 km
2
to 320×40 km
2
. In general
the datasets of NO
2
columns have higher spatial resolutions
cover longer periods
and show better data precision compared with those of NH
3
columns.
An inferential model is often used to estimate dry nitrogen depositions using the N-related component concentrations at the ground level and the deposition velocity (often estimated by an atmospheric CTM). The N-related components in the atmosphere include the gas formats of NO
2
HNO
3
and NH
3
and the particulate formats of NO
3
-
and NH
4
+
which can be estimated from the satellite observations of NO
2
and NH
3
columns
respectively. Three methods were used to covert the atmospheric columns of the N-related components to the concentrations at the ground level
namely
by taking the columns as the ground-level concentrations
by constructing a statistical model that involved the columns and the related influencing factors to estimate the ground-level concentrations
and by considering the profiles of N-related components simulated from CTM to estimate the ground-level concentrations.
Three methods were also used to estimate wet inorganic nitrogen depositions
including an empirical formula
a statistical model
and a process model. The process model can reflect the combined effects of the N-related component concentrations in the atmosphere and the precipitation amounts. In this model
the key parameter of washing coefficient on N-related components from the atmosphere was estimated by using a mixed model that involved a large amount of N depositions observed at ground sites.
Each model for estimating inorganic N depositions had its respective advantages and disadvantages. Those methods that consider the atmospheric profiles of N-related components to estimate the dry N depositions and the process model to estimate the wet N depositions have been used to systematically estimate inorganic N depositions on a regional scale
including gas
particulate
and wet depositions. These methods have obtained reliable estimates of N depositions across China.
Although some methods have been developed to estimate inorganic N depositions based on satellite observations
these methods still show some limitations. To accurately estimate the N deposition on a regional scale
advanced techniques that use satellite sensors
show high spatial and temporal resolutions on N-related components in the atmosphere
and utilize new models for estimating the key parameters with high precision should be developed in future.
大气无机氮沉降气体沉降模型颗粒物沉降模型湿沉降模型卫星遥感
atmospheric inorganic nitrogen depositiongas deposition modelparticulate deposition modelwet deposition modelsatellite remote sensing
Adon M, Galy-Lacaux C, Delon C, Yoboue V, Solmon F and Kaptue Tchuente A T. 2013. Dry deposition of nitrogen compounds (NO2, HNO3, NH3), sulfur dioxide and ozone in west and central African ecosystems using the inferential method. Atmospheric Chemistry and Physics, 13(22): 11351-11374 [DOI: 10.5194/acp-13-11351-2013http://dx.doi.org/10.5194/acp-13-11351-2013]
Barrie L A. 1985. Scavenging ratios, wet deposition, and in-cloud oxidation: an application to the oxides of Sulphur and Nitrogen. Journal of Geophysical Research: Atmospheres, 90(D3): 5789-5799 [DOI: 10.1029/JD090iD03p05789http://dx.doi.org/10.1029/JD090iD03p05789]
Beer R, Shephard M W, Kulawik S S, Clough S A, Eldering A, Bowman K W, Sander S P, Fisher B M, Payne V H, Luo M Z, Osterman G B and Worden J R. 2008. First satellite observations of lower tropospheric ammonia and methanol. Geophysical Research Letters, 35(9): L09801 [DOI: 10.1029/2008GL033642http://dx.doi.org/10.1029/2008GL033642]
Boersma K F, Eskes H J and Brinksma E J. 2004. Error analysis for tropospheric NO2 retrieval from space. Journal of Geophysical Research: Atmospheres, 109(D4): D04311 [DOI: 10.1029/2003JD003962http://dx.doi.org/10.1029/2003JD003962]
Boersma K F, Eskes H J, Dirksen R J, Van der A R J, Veefkind J P, Stammes P, Huijnen V, Kleipool Q L, Sneep M, Claas J, Leitão J, Richter A, Zhou Y and Brunner D. 2011. An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument. Atmospheric Measurement Techniques, 4(9): 1905-1928 [DOI: 10.5194/amt-4-1905-2011http://dx.doi.org/10.5194/amt-4-1905-2011]
Butz A, Galli A, Hasekamp O, Landgraf J, Tol P and Aben I. 2012. TROPOMI aboard Sentinel-5 Precursor: prospective performance of CH4 retrievals for aerosol and cirrus loaded atmospheres. Remote Sensing of Environment, 120: 267-276 [DOI: 10.1016/j.rse.2011.05.030http://dx.doi.org/10.1016/j.rse.2011.05.030]
Chatterjee A, Jayaraman A, Rao T N and Raha S. 2010. In-cloud and below-cloud scavenging of aerosol ionic species over a tropical rural atmosphere in India. Journal of Atmospheric Chemistry, 66(1): 27-40 [DOI: 10.1007/s10874-011-9190-5http://dx.doi.org/10.1007/s10874-011-9190-5]
Chen D M, Feng Y and Zhang X Y. 2017. Comparison of variability and change rate in tropospheric NO2 column obtained from satellite products across China during 1997-2015. International Journal of Digital Earth, 10(8): 814-828 [DOI: 10.1080/17538947.2016.1252435http://dx.doi.org/10.1080/17538947.2016.1252435]
Chen L F, Shang H Z, Fan M, Tao J H, Husi L T, Zhang Y, Wang H M, Cheng L X, Zhang X X, Wei L S, Li M Y, Zou M M and Liu D D. 2021. Mission overview of the GF-5 satellite for atmospheric parameter monitoring. National Remote Sensing Bulletin, 25(9): 1917-1931
陈良富, 尚华哲, 范萌, 陶金花, 胡斯勒图, 张莹, 王红梅, 程良晓, 张欣欣, 伟乐斯, 李明阳, 邹铭敏, 刘冬冬. 2021. 高分五号卫星大气参数探测综述. 遥感学报, 25(9): 1917-1931 [DOI: 10.11834/jrs.20210582http://dx.doi.org/10.11834/jrs.20210582]
Cheng L X, Tao J H, Yu C, Zhang Y, Fan M, Wang Y P, Chen Y L, Zhu L L, Gu J B and Chen L F. 2021. Tropospheric NO2 column density retrieval from the GF-5 EMI data. Journal of Remote Sensing, 25(11): 2313-2325
程良晓, 陶金花, 余超, 张莹, 范萌, 王雅鹏, 陈元琳, 朱莉莉, 顾坚斌, 陈良富. 2021. 高分五号大气痕量气体差分吸收光谱仪对流层NO2柱浓度遥感反演研究. 遥感学报, 25(11): 2313-2325 [DOI: 10.11834/jrs.20210303http://dx.doi.org/10.11834/jrs.20210303]
Cheng M M, Jiang H, Guo Z, Zhang X Y and Lu X H. 2013. Estimating NO2 dry deposition using satellite data in eastern China. International Journal of Remote Sensing, 34(7): 2548-2565 [DOI: 10.1080/01431161.2012.747019http://dx.doi.org/10.1080/01431161.2012.747019]
Clarisse L, Clerbaux C, Dentener F, Hurtmans D and Coheur P F. 2009. Global ammonia distribution derived from infrared satellite observations. Nature Geoscience, 2(7): 479-483 [DOI: 10.1038/ngeo551http://dx.doi.org/10.1038/ngeo551]
Coheur P F, Clarisse L, Turquety S, Hurtmans D and Clerbaux C. 2009. IASI measurements of reactive trace species in biomass burning plumes. Atmospheric Chemistry and Physics, 9(15): 5655-5667 [DOI: 10.5194/acp-9-5655-2009http://dx.doi.org/10.5194/acp-9-5655-2009]
Cui J, Zhou J, Peng Y, He Y Q, Yang H, Xu L J and Chan A. 2014. Long-term atmospheric wet deposition of dissolved organic nitrogen in a typical red-soil agro-ecosystem, Southeastern China. Environmental Science: Processes and Impacts, 16(5): 1050-1058 [DOI: 10.1039/c3em00613ahttp://dx.doi.org/10.1039/c3em00613a]
Dammers E, Palm M, Van Damme M, Vigouroux C, Smale D, Conway S, Toon G C, Jones N, Nussbaumer E, Warneke T, Petri C, Clarisse L, Clerbaux C, Hermans C, Lutsch E, Strong K, Hannigan J W, Nakajima H, Morino I, Herrera B, Stremme W, Grutter M, Schaap M, Wichink Kruit R J, Notholt J, Coheur P F and Erisman J W. 2016. An evaluation of IASI-NH3 with ground-based Fourier transform infrared spectroscopy measurements. Atmospheric Chemistry and Physics, 16(16): 10351-10368 [DOI: 10.5194/acp-16-10351-2016http://dx.doi.org/10.5194/acp-16-10351-2016]
Deng Y Y. 2014. A Study of Estimating the Atmospheric Deposition of Nitrogen to Coastal Water of China based on the Satellite Data. Qingdao: Ocean University of China
邓银银. 2014. 基于卫星数据的中国近海氮沉降通量估算研究. 青岛: 中国海洋大学
Du J H, Kuang K Y and Mu J B. 2015. Estimation of the acid deposition fluxes in Qingdao city based on OMI satellite remote sensing data. Journal of the Environmental Management College of China-EMCC, 2: 1-3, 23
杜金辉, 匡开宇, 慕金波. 2015. 基于OMI数据的青岛市酸沉降通量估算. 中国环境管理干部学院学报, (2): 1-3, 23 [DOI: 10.13358/j.issn.1008-813x.2015.02.01http://dx.doi.org/10.13358/j.issn.1008-813x.2015.02.01]
Flechard C R, Nemitz E, Smith R I, Fowler D, Vermeulen A T, Bleeker A, Erisman J W, Simpson D, Zhang L, Tang Y S and Sutton M A. 2011. Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope network. Atmospheric Chemistry and Physics, 11(6): 2703-2728 [DOI: 10.5194/acp-11-2703-2011http://dx.doi.org/10.5194/acp-11-2703-2011]
Galloway J N, Schlesinger W H, Levy H II, Michaels A and Schnoor J L. 1995. Nitrogen fixation: anthropogenic enhancement-environmental response. Global Biogeochemical Cycles, 9(2): 235-252 [DOI: 10.1029/95GB00158http://dx.doi.org/10.1029/95GB00158]
Ge B Z, Wang Z F, Xu X B, Wu J B, Yu X L and Li J. 2014. Wet deposition of acidifying substances in different regions of China and the rest of East Asia: modeling with updated NAQPMS. Environmental Pollution, 187: 10-21 [DOI: 10.1016/j.envpol.2013.12.014http://dx.doi.org/10.1016/j.envpol.2013.12.014]
Georgoulias A K, Van der A R J, Stammes P, Boersma K F and Eskes H J. 2019. Trends and trend reversal detection in 2 decades of tropospheric NO2 satellite observations. Atmospheric Chemistry and Physics, 19(9): 6269-6294 [DOI: 10.5194/acp-19-6269-2019http://dx.doi.org/10.5194/acp-19-6269-2019]
Gu J B, Chen L F, Yu C, Li S S, Tao J H, Fan M, Xiong X Z, Wang Z F, Shang H Z and Su L. 2017. Ground-Level NO2 concentrations over China inferred from the satellite OMI and CMAQ model simulations. Remote Sensing, 9(6): 519 [DOI: 10.3390/rs9060519http://dx.doi.org/10.3390/rs9060519]
Guo Y X, Tang Q H, Gong D Y and Zhang Z Y. 2017. Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model. Remote Sensing of Environment, 198: 140-149 [DOI: 10.1016/j.rse.2017.06.001http://dx.doi.org/10.1016/j.rse.2017.06.001]
Han X, Zhang M G, Skorokhod A and Kou X X. 2017. Modeling dry deposition of reactive nitrogen in China with RAMS-CMAQ. Atmospheric Environment, 166: 47-61 [DOI: 10.1016/j.atmosenv.2017.07.015http://dx.doi.org/10.1016/j.atmosenv.2017.07.015]
Hanson P J and Lindberg S E. 1991. Dry deposition of reactive nitrogen compounds: a review of leaf, canopy and non-foliar measurements. Atmospheric Environment. Part A. General Topics, 25(8): 1615-1634 [DOI: 10.1016/0960-1686(91)90020-8http://dx.doi.org/10.1016/0960-1686(91)90020-8]
Hayami H, Sakurai T, Han Z, Ueda H, Carmichael G R, Streets D, Holloway T, Wang Z, Thongboonchoo N, Engardt M, Bennet C, Fung C, Chang A, Park S U, Kajino M, Sartelet K, Matsuda K and Amann M. 2008. MICS-Asia II: model intercomparison and evaluation of particulate sulfate, nitrate and ammonium. Atmospheric Environment, 42(15): 3510-3527 [DOI: 10.1016/j.atmosenv.2007.08.057http://dx.doi.org/10.1016/j.atmosenv.2007.08.057]
Jia Y L, Yu G R, Gao Y N, He N P, Wang Q F, Jiao C C and Zuo Y. 2016. Global inorganic nitrogen dry deposition inferred from ground- and space-based measurements. Scientific Reports, 6(1): 19810 [DOI: 10.1038/srep19810http://dx.doi.org/10.1038/srep19810]
Kang Y N, Liu M X, Song Y, Huang X, Yao H, Cai X H, Zhang H S, Kang L, Liu X J, Yan X Y, He H, Zhang Q, Shao M and Zhu T. 2016. High-resolution ammonia emissions inventories in China from 1980 to 2012. Atmospheric Chemistry and Physics, 16(4): 2043-2058 [DOI: 10.5194/acp-16-2043-2016http://dx.doi.org/10.5194/acp-16-2043-2016]
Kharol S K, Shephard M W, McLinden C A, Zhang L, Sioris C E, O'Brien J M, Vet R, Cady-Pereira K E, Hare E, Siemons J and Krotkov N A. 2018. Dry deposition of reactive nitrogen from satellite observations of ammonia and nitrogen dioxide over North America. Geophysical Research Letters, 45(2): 1157-1166 [DOI: 10.1002/2017GL075832http://dx.doi.org/10.1002/2017GL075832]
Kurokawa J, Ohara T, Morikawa T, Hanayama S, Janssens-Maenhout G, Fukui T, Kawashima K and Akimoto H. 2013. Emissions of air pollutants and greenhouse gases over Asian regions during 2000-2008: regional emission inventory in Asia (REAS) version 2. Atmospheric Chemistry and Physics, 13(21): 11019-11058 [DOI: 10.5194/acp-13-11019-2013http://dx.doi.org/10.5194/acp-13-11019-2013]
Lamsal L N, Martin R V, Van Donkelaar A, Steinbacher M, Celarier E A, Bucsela E, Dunlea E J and Pinto J P. 2008. Ground-level nitrogen dioxide concentrations inferred from the satellite-borne Ozone Monitoring Instrument. Journal of Geophysical Research: Atmospheres, 113(D16): D16308 [DOI: 10.1029/2007JD009235http://dx.doi.org/10.1029/2007JD009235]
Leue C, Wenig M, Wagner T, Klimm O, Platt U and Jähne B. 2001. Quantitative analysis of NOx emissions from Global Ozone Monitoring Experiment satellite image sequences. Journal of Geophysical Research: Atmospheres, 106(D6): 5493-5505 [DOI: 10.1029/2000JD900572http://dx.doi.org/10.1029/2000JD900572]
Li M, Zhang Q, Kurokawa J I, Woo J H, He K B, Lu Z F, Ohara T, Song Y, Streets D G, Carmichael G R, Cheng Y F, Hong C P, Huo H, Jiang X J, Kang S C, Liu F, Su H and Zheng B. 2017a. MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmospheric Chemistry and Physics, 17(2): 935-963 [DOI: 10.5194/acp-17-935-2017http://dx.doi.org/10.5194/acp-17-935-2017]
Li R, Cui L L, Fu H B, Zhao Y L, Zhou W H and Chen J M. 2020. Satellite-based estimates of wet ammonium (NH4-N) deposition fluxes across China during 2011-2016 using a space-time ensemble model. Environmental Science and Technology, 54(21): 13419-13428 [DOI: 10.1021/acs.est.0c03547http://dx.doi.org/10.1021/acs.est.0c03547]
Li R, Cui L L, Meng Y, Zhao Y L and Fu H B. 2019a. Satellite-based prediction of daily SO2 exposure across China using a high-quality random forest-spatiotemporal Kriging (RF-STK) model for health risk assessment. Atmospheric Environment, 208: 10-19 [DOI: 10.1016/j.atmosenv.2019.03.029http://dx.doi.org/10.1016/j.atmosenv.2019.03.029]
Li R, Cui L L, Zhao Y L, Meng Y, Kong W and Fu H B. 2019b. Estimating monthly wet sulfur (S) deposition flux over China using an ensemble model of improved machine learning and geostatistical approach. Atmospheric Environment, 214: 116884 [DOI: 10.5194/acp-19-11043-2019http://dx.doi.org/10.5194/acp-19-11043-2019]
Li X W, Zhang Y, Jiang S, Wang T T, Ji X Y, Mao J J and Ding M. 2019. Preliminary application of atmospheric pollution monitoring in Jiangsu province with TROPOMI sensor onboard Sentinel-5P satellite. Environmental Monitoring and Forewarning, 11(2): 10-16
李旭文, 张悦, 姜晟, 王甜甜, 纪轩禹, 茅晶晶, 丁铭. 2019. “哨兵-5P”卫星TROPOMI传感器在江苏省域大气污染监测中的初步应用. 环境监控与预警, 11(2): 10-16 [DOI: 10.3969/j.issn.1674-6732.2019.02.002http://dx.doi.org/10.3969/j.issn.1674-6732.2019.02.002]
Li Y, Thompson T M, van Damme M, Chen X, Benedict K B, Shao Y X, Day D, Boris A, Sullivan A P, Ham J, Whitburn S, Clarisse L, Coheur P F and Collett J L. 2017b. Temporal and spatial variability of ammonia in urban and agricultural regions of northern Colorado, United States. Atmospheric Chemistry and Physics, 17(10): 6197-6213 [DOI: 10.5194/acp-17-6197-2017http://dx.doi.org/10.5194/acp-17-6197-2017]
Liu L, Yang Y Y, Xi R P, Zhang X Y, Xu W, Liu X J, Li Y, Liu P and Wang Z. 2021. Global wet-reduced nitrogen deposition derived from combining satellite measurements with output from a chemistry transport model. Journal of Geophysical Research: Atmospheres, 126(4): e2020JD033977 [DOI: 10.1029/2020JD033977http://dx.doi.org/10.1029/2020JD033977]
Liu L, Zhang X Y, Wang S Q, Lu X H and Ouyang X Y. 2016. A review of spatial variation of inorganic nitrogen (N) wet deposition in China. PLoS ONE, 11(1): e0146051 [DOI: 10.1371/journal.pone.0146051http://dx.doi.org/10.1371/journal.pone.0146051]
Liu L, Zhang X Y, Xu W, Liu X J, Lu X H, Chen D M, Zhang X M, Wang S Q and Zhang W T. 2017b. Estimation of monthly bulk nitrate deposition in China based on satellite NO2 measurement by the Ozone Monitoring Instrument. Remote Sensing of Environment, 199: 93-106 [DOI: 10.1016/j.rse.2017.07.005http://dx.doi.org/10.1016/j.rse.2017.07.005]
Liu L, Zhang X Y, Xu W, Liu X J, Lu X H, Wang S Q, Zhang W T and Zhao L M. 2017a. Ground ammonia concentrations over China derived from satellite and atmospheric transport modeling. Remote Sensing, 9(5): 467 [DOI: 10.3390/rs9050467http://dx.doi.org/10.3390/rs9050467]
Liu L, Zhang X Y, Xu W, Liu X J, Wei J, Wang Z and Yang Y Y. 2020a. Global estimates of dry ammonia deposition inferred from space-measurements. Science of the Total Environment, 730: 139189 [DOI: 10.1016/j.scitotenv.2020.139189http://dx.doi.org/10.1016/j.scitotenv.2020.139189]
Liu L, Zhang X Y, Xu W, Liu X J, Zhang Y, Li Y, Wei J, Lu X H, Wang S Q, Zhang W T, Zhao L M, Wang Z and Wu X D. 2020b. Fall of oxidized while rise of reduced reactive nitrogen deposition in China. Journal of Cleaner Production, 272: 122875 [DOI: 10.1016/j.jclepro.2020.122875http://dx.doi.org/10.1016/j.jclepro.2020.122875]
Liu L, Zhang X Y, Zhang Y, Xu W, Liu X J, Zhang X M, Feng J L, Chen X R, Zhang Y H, Lu X H, Wang S Q, Zhang W T and Zhao L M. 2017c. Dry particulate nitrate deposition in China. Environmental Science and Technology, 51(10): 5572-5581 [DOI: 10.1021/acs.est.7b00898http://dx.doi.org/10.1021/acs.est.7b00898]
Lu X H, Jiang H, Zhang X Y, Liu J X, Zhang Z, Jin J X, Wang Y, Xu J H and Cheng M M. 2013. Estimated global nitrogen deposition using NO2 column density. International Journal of Remote Sensing, 34(24): 8893-8906 [DOI: 10.1080/01431161.2013.853894http://dx.doi.org/10.1080/01431161.2013.853894]
Ma S, Yang X F and Li Z W. 2012. An approach of estimating the atmospheric deposition of nitrogen to the coastal water using GOME-2 satellite data. Marine Environmental Science, 31(2) 272-276
马胜, 杨晓峰, 李紫薇. 2012. 基于GOME-2卫星遥感数据估算近海海域氮沉降通量的方法研究. 海洋环境科学, 31(2) 272-276 [DOI: 10.3969/j.issn.1007-6336.2012.02.027http://dx.doi.org/10.3969/j.issn.1007-6336.2012.02.027]
Martin R V, Parrish D D, Ryerson T B, Nicks D K, Chance J K, Kurosu T P, Jacob D J, Sturges E D, Fried A and Wert B P. 2004. Evaluation of GOME satellite measurements of tropospheric NO2 and HCHO using regional data from aircraft campaigns in the southeastern United States. Journal of Geophysical Research: Atmospheres, 109(D24): D24307 [DOI: 10.1029/2004JD004869http://dx.doi.org/10.1029/2004JD004869]
Meyers T P and Hicks B B. 1988. Dry deposition of O3, SO2, and HNO3 to different vegetation in the same exposure environment. Environmental Pollution, 53(1/4): 13-25 [DOI: 10.1016/0269-7491(88)90022-Xhttp://dx.doi.org/10.1016/0269-7491(88)90022-X]
Nowlan C R, Martin R V, Philip S, Lamsal L N, Krotkov N A, Marais E A, Wang S and Zhang Q. 2014. Global dry deposition of nitrogen dioxide and sulfur dioxide inferred from space-based measurements. Global Biogeochemical Cycles, 28(10): 1025-1043 [DOI: 10.1002/2014GB004805http://dx.doi.org/10.1002/2014GB004805]
Pratt G C, Orr E J, Bock D C, Strassman R L, Fundine D W, Twaroski C J, Thornton J D and Meyers T P. 1996. Estimation of dry deposition of inorganics using filter pack data and inferred deposition velocity. Environmental Science and Technology, 30(7): 2168-2177 [DOI: 10.1021/es9505558http://dx.doi.org/10.1021/es9505558]
Qi J H, Shi J H, Gao H W and Sun Z. 2013. Atmospheric dry and wet deposition of nitrogen species and its implication for primary productivity in coastal region of the Yellow Sea, China. Atmospheric Environment, 81: 600-608 [DOI: 10.1016/j.atmosenv.2013.08.022http://dx.doi.org/10.1016/j.atmosenv.2013.08.022]
Qin K, Rao L L, Xu J, Bai Y, Zou J H, Hao N, Li S S and Yu C. 2017. Estimating ground level NO2 concentrations over Central-Eastern China using a satellite-based geographically and temporally weighted regression model. Remote Sensing, 9(9): 950 [DOI: 10.3390/rs9090950http://dx.doi.org/10.3390/rs9090950]
Seinfeld J H and Pandis S N. 2016. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Hoboken: John Wiley and Sons
Shi C E, Qiu M Y, Zhang A M, Zhang H, Zhang S and Wang Z F. 2010. Spatiotemporal trends and the impact factors of acid rain in Anhui Province. Environmental Science, 31(6): 1675-1681
石春娥, 邱明燕, 张爱民, 张浩, 张苏, 王自发. 2010. 安徽省酸雨分布特征和发展趋势及其影响因子. 环境科学, 31(6): 1675-1681 [DOI: 10.13227/j.hjkx.2010.06.015http://dx.doi.org/10.13227/j.hjkx.2010.06.015]
Si Y D, Li S S, Chen L F, Yu C, Wang H M and Wang Y P. 2019. Impact of precursor gases and meteorological variables on satellite-estimated near-surface sulfate and nitrate concentrations over the North China Plain. Atmospheric Environment, 199: 345-356 [DOI: 10.1016/j.atmosenv.2018.11.030http://dx.doi.org/10.1016/j.atmosenv.2018.11.030]
Si Y D, Li S S, Chen L F, Yu C and Zhu W D. 2017. Estimation of satellite-based SO42- and NH4+ composition of ambient fine particulate matter over China using chemical transport model. Remote Sensing, 9(8): 817 [DOI: 10.3390/rs9080817http://dx.doi.org/10.3390/rs9080817]
Sparks J P, Walker J, Turnipseed A and Guenther A. 2008. Dry nitrogen deposition estimates over a forest experiencing free air CO2 enrichment. Global Change Biology, 14(4): 768-781 [DOI: 10.1111/j.1365-2486.2007.01526.xhttp://dx.doi.org/10.1111/j.1365-2486.2007.01526.x]
Stevens C J, Duprè C, Dorland E, Gaudnik C, Gowing D J G, Bleeker A, Diekmann M, Alard D, Bobbink R, Fowler D, Corcket E, Mountford J O, Vandvik V, Aarrestad P A, Muller S and Dise N B. 2010. Nitrogen deposition threatens species richness of grasslands across Europe. Environmental Pollution, 158(9): 2940-2945 [DOI: 10.1016/j.envpol.2010.06.006http://dx.doi.org/10.1016/j.envpol.2010.06.006]
Van Damme M, Clarisse L, Dammers E, Liu X, Nowak J B, Clerbaux C, Flechard C R, Galy-Lacaux C, Xu W, Neuman J A, Tang Y S, Sutton M A, Erisman J W and Coheur P F. 2015a. Towards validation of ammonia (NH3) measurements from the IASI satellite. Atmospheric Measurement Techniques, 8(3): 1575-1591 [DOI: 10.5194/amt-8-1575-2015http://dx.doi.org/10.5194/amt-8-1575-2015]
Van Damme M, Clarisse L, Heald C L, Hurtmans D, Ngadi Y, Clerbaux C, Dolman A J, Erisman J W and Coheur P F. 2014b. Global distributions, time series and error characterization of atmospheric ammonia (NH3) from IASI satellite observations. Atmospheric Chemistry and Physics, 14(6): 2905-2922 [DOI: 10.5194/acp-14-2905-2014http://dx.doi.org/10.5194/acp-14-2905-2014]
Van Damme M, Erisman J W, Clarisse L, Dammers E, Whitburn S, Clerbaux C, Dolman A J and Coheur P F. 2015b. Worldwide spatiotemporal atmospheric ammonia (NH3) columns variability revealed by satellite. Geophysical Research Letters, 42(20): 8660-8668 [DOI: 10.1002/2015GL065496http://dx.doi.org/10.1002/2015GL065496]
Van Damme M, Wichink Kruit R J, Schaap M, Clarisse L, Clerbaux C, Coheur P F, Dammers E, Dolman A and Erisman J. 2014a. Evaluating 4 years of atmospheric ammonia (NH3) over Europe using IASI satellite observations and LOTOS‐EUROS model results. Journal of Geophysical Research: Atmospheres, 119(15): 9549-9566 [DOI: 10.1002/2014JD021911http://dx.doi.org/10.1002/2014JD021911]GeffenJVan, BoersmaKF, EskesH, SneepM, LindenMter, ZaraM, and VeefkindJP. 2020. S5P TROPOMI NO2 slant column retrieval: method, stability, uncertainties and comparisons with OMI. Atmospheric Measurement Techniques, 13(3): 1315-1335. [DOI: 10.5194/amt-13-1315-2020] Van der GraafS C, DammersE, SchaapM and ErismanJ W. 2018. Technical note: how are NH3 dry deposition estimates affected by combining the LOTOS-EUROS model with IASI-NH3 satellite observations?. Atmospheric Chemistry and Physics, 18(17): 13173-13196 [DOI: 10.5194/acp-18-13173-2018http://dx.doi.org/10.5194/acp-18-13173-2018]
Wagner T, Wittrock F, Richter A, Wenig M, Burrows J P and Platt U. 2002. Continuous monitoring of the high and persistent chlorine activation during the Arctic winter 1999/2000 by the GOME instrument on ERS-2. Journal of Geophysical Research: Atmospheres, 107(D20): 8267 [DOI: 10.1029/2001JD000466http://dx.doi.org/10.1029/2001JD000466]
Wang X M, Wu Z Y, Shao M, Fang Y T, Zhang L M, Chen F, Chan P W, Fan Q, Wang Q, Zhu S J and Bao R Y. 2013. Atmospheric nitrogen deposition to forest and estuary environments in the Pearl River Delta region, southern China. Tellus B: Chemical and Physical Meteorology, 65(1): 20480 [DOI: 10.3402/tellusb.v65i0.20480http://dx.doi.org/10.3402/tellusb.v65i0.20480]
Wang Y, Dörner S, Donner S, Böhnke S, De Smedt I, Dickerson R R, Dong Z P, He H, Li Z Q, Li Z Q, Li D H, Liu D, Ren X R, Theys N, Wang Y Y, Wang Y, Wang Z Z, Xu H, Xu J W and Wagner T. 2019a. Vertical profiles of NO2, SO2, HONO, HCHO, CHOCHO and aerosols derived from MAX-DOAS measurements at a rural site in the central western North China Plain and their relation to emission sources and effects of regional transport. Atmospheric Chemistry and Physics, 19(8): 5417-5449 [DOI: 10.5194/acp-19-5417-2019http://dx.doi.org/10.5194/acp-19-5417-2019]
Wang Z, Zhang X Y, Liu L, Cheng M M and Xu J F. 2020. Spatial and seasonal patterns of atmospheric nitrogen deposition in North China. Atmospheric and Oceanic Science Letters, 13(3): 188-194 [DOI: 10.1080/16742834.2019.1701385http://dx.doi.org/10.1080/16742834.2019.1701385]
Wang Z, Zhang X Y, Liu L, Wang S Q, Wu X D, Zhang W T, Zhao L M, Lu X H and Zhao X F. 2019b. Evaluating the effects of nitrogen deposition on rice ecosystems across China. Agriculture, Ecosystems and Environment, 285: 106617 [DOI: 10.1016/j.agee.2019.106617http://dx.doi.org/10.1016/j.agee.2019.106617]
Warner J X, Wei Z G, Strow L L, Dickerson R R and Nowak J B. 2016. The global tropospheric ammonia distribution as seen in the 13-year AIRS measurement record. Atmospheric Chemistry and Physics, 16(8): 5467-5479 [DOI: 10.5194/acp-16-5467-2016http://dx.doi.org/10.5194/acp-16-5467-2016]
Wang Y, DÖrner S, Donner S, BÖhnke S, Smedt I De, Dickerson R R, Dong Z P, He H, Li Z Q, Li D H, Liu D, Ren X R, Theys N, Wang Y Y, Wang Y, Wang Z Z, Xu H, Wanger T. 2019a. Vertical profiles of NO, SO2, HONO, HCHO, CHOCHO and aerosols derived from MAX-DOAS measurements at a rural site in the central western North China Plain and their relation to emission sources and effects of regional transport. Atmospheric Chemistry and Physics, 19: 5417-5449.
Wang Z, Zhang X Y, Liu L, Wang S Q, Wu X D, Zhang W T, Zhao L M, Lu X H, and Zhao X F. 2019b. Evaluating the effects of nitrogen deposition on rice ecosystems across Chin. Agriculture, Ecosystems and Environment, 285: 10667. [DOI: 10.1016/j.agee.2019.106617http://dx.doi.org/10.1016/j.agee.2019.106617]
Wen Z, Xu W, Li Q, Han M J, Tang A H, Zhang Y, Luo X S, Shen J L, Wang W, Li K H, Pan Y P, Zhang L, Li W Q, Collett J L, Zhong B Q, Wang X M, Goulding K, Zhang F S and Liu X J. 2020. Changes of nitrogen deposition in China from 1980 to 2018. Environment International, 144: 106022 [DOI: 10.1016/j.envint.2020.106022]Wesely M L and Hicks B B. 2000. A review of the current status of knowledge on dry deposition. Atmospheric Environment, 34(12/14): 2261-2282 [DOI: 10.1016/S1352-2310(99)00467-7http://dx.doi.org/10.1016/S1352-2310(99)00467-7]
Wespes C, Hurtmans D, Clerbaux C, Santee M L, Martin R V and Coheur P F. 2009. Global distributions of nitric acid from IASI/MetOP measurements. Atmospheric Chemistry and Physics, 9(20): 7949-7962 [DOI: 10.5194/acp-9-7949-2009http://dx.doi.org/10.5194/acp-9-7949-2009]
Whitburn S, Van Damme M, Clarisse L, Bauduin S, Heald C L, Hadji-Lazaro J, Hurtmans D, Zondlo M A, Clerbaux C and Coheur P F. 2016. A flexible and robust neural network IASI-NH3 retrieval algorithm. Journal of Geophysical Research: Atmospheres, 121(11): 6581-6599 [DOI: 10.1002/2016JD024828http://dx.doi.org/10.1002/2016JD024828]
Wu Y F, Gao X P, Gui D W and Liu X J. 2019. Research progress on the monitoring methods of atmospheric nitrogen deposition. Chinese Journal of Applied Ecology, 30(10): 3605-3614
吴玉凤, 高霄鹏, 桂东伟, 刘学军. 2019. 大气氮沉降监测方法研究进展. 应用生态学报, 30(10): 3605-3614 [DOI: 10.13287/j.1001-332.201910.008http://dx.doi.org/10.13287/j.1001-332.201910.008]
Xie Z Q, Du Y, Zeng Y, Li Y C, Wu J G and Jiao S M. 2008. Impact of spatio-temporal variation of precipitation on severe acid rain in Southern China. Acta Geographica Sinica, 63(9): 913-923
谢志清, 杜银, 曾燕, 李亚春, 武金岗, 焦圣明. 2008. 降水时空变化对中国南方强酸雨分布的影响. 地理学报, 63(9): 913-923 [DOI: 10.3321/j.issn:0375-5444.2008.09.002http://dx.doi.org/10.3321/j.issn:0375-5444.2008.09.002]
Xu D H, Ge B Z, Chen X S, Sun Y L, Cheng N L, Li M, Pan X L, Ma Z Q, Pan Y P and Wang Z F. 2019. Multi-method determination of the below-cloud wet scavenging coefficients of aerosols in Beijing, China. Atmospheric Chemistry and Physics, 19(24): 15569-15581 [DOI: 10.5194/acp-19-15569-2019http://dx.doi.org/10.5194/acp-19-15569-2019]
Xu W, Luo X S, Pan Y P, Zhang L, Tang A H, Shen J L, Zhang Y, Li K H, Wu Q H, Yang D W, Zhang Y Y, Xue J, Li W Q, Li Q Q, Tang L, Lu S H, Liang T, Tong Y A, Liu P, Zhang Q, Xiong Z Q, Shi X J, Wu L H, Shi W Q, Tian K, Zhong X H, Shi K, Tang Q Y, Zhang L J, Huang J L, He C E, Kuang F H, Zhu B, Liu H, Jin X, Xin Y J, Shi X K, Du E Z, Dore A J, Tang S, Collett J L, Goulding K, Sun Y X, Ren J, Zhang F S and Liu X J. 2015. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China. Atmospheric Chemistry and Physics, 15(21): 12345-12360 [DOI: 10.5194/acp-15-12345-2015http://dx.doi.org/10.5194/acp-15-12345-2015]
Xue W B, Wu W L, Lei Y and Fu F. 2015. Retrieval of NO2 concentrations in high resolution near-surface in China. Environmental Monitoring in China, 31(2): 153-156
薛文博, 武卫玲, 雷宇, 付飞. 2015. 中国高分辨率近地面NO2浓度反演. 中国环境监测, 31(2): 153-156 [DOI: 10.3969/j.issn.1002-6002.2015.02.030http://dx.doi.org/10.3969/j.issn.1002-6002.2015.02.030]
You J W, Zou B, Zhao X G, Xu S and He R. 2019. Estimating ground-level NO2 concentrations across mainland China using random forests regression modeling. China Environmental Science, 39(3): 969-979
游介文, 邹滨, 赵秀阁, 许珊, 何瑞. 2019. 基于随机森林模型的中国近地面NO2浓度估算. 中国环境科学, 39(3): 969-979 [DOI: 10.19674/j.cnki.issn1000-6923.2019.0116http://dx.doi.org/10.19674/j.cnki.issn1000-6923.2019.0116]
Yu G R, Jia Y L, He N P, Zhu J X, Chen Z, Wang Q F, Piao S, Liu X J, He H L, Guo X B, Wen Z, Li P, Ding G A and Goulding K. 2019. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 12(6): 424-429 [DOI: 10.1038/s41561-019-0352-4http://dx.doi.org/10.1038/s41561-019-0352-4]
Zeng K L, Zhou Y K and Tang B. 2018. NO2 in the atmosphere of the Beibu gulf region based on OMI data dry deposition fluxes estimation. Geomatics and Spatial Information Technology, 41(7): 52-55
曾孔莲, 周玉科, 唐斌. 2018. 基于OMI数据的北部湾NO2干沉降通量估算. 测绘与空间地理信息, 41(7): 52-55 [DOI: 10.3969/j.issn.1672-5867.2018.07.013http://dx.doi.org/10.3969/j.issn.1672-5867.2018.07.013]
Zhan Y, Luo Y Z, Deng X F, Zhang K S, Zhang M H, Grieneisen M L and Di B F. 2018. Satellite-based estimates of daily NO2 exposure in China using hybrid random forest and spatiotemporal kriging model. Environmental Science and Technology, 52(7): 4180-4189 [DOI: 10.1021/acs.est.7b05669http://dx.doi.org/10.1021/acs.est.7b05669]
Zhang H Y, Di B F, Liu D R, Li J R and Zhan Y. 2019. Spatiotemporal distributions of ambient SO2 across China based on satellite retrievals and ground observations: substantial decrease in human exposure during 2013-2016. Environmental Research, 179: 108795 [DOI: 10.1016/j.envres.2019.108795http://dx.doi.org/10.1016/j.envres.2019.108795]
Zhang L, Brook J R and Vet R. 2003. A revised parameterization for gaseous dry deposition in air-quality models. Atmospheric Chemistry and Physics, 3(6): 2067-2082 [DOI: 10.5194/acp-3-2067-2003http://dx.doi.org/10.5194/acp-3-2067-2003]
Zhang Q, Streets D G, Carmichael G R, He K B, Huo H, Kannari A, Klimont Z, Park I S, Reddy S, Fu J S, Chen D, Duan L, Lei Y, Wang L T and Yao Z L. 2009. Asian emissions in 2006 for the NASA INTEX-B mission. Atmospheric Chemistry and Physics, 9(14): 5131-5153 [DOI: 10.5194/acp-9-5131-2009http://dx.doi.org/10.5194/acp-9-5131-2009]
Zhang T H, Zhu Z M, Gong W, Zhu Z R, Sun K, Wang L C, Huang Y S, Mao F Y, Shen H F, Li Z W and Xu K. 2018a. Estimation of ultrahigh resolution PM2.5 concentrations in urban areas using 160 m Gaofen-1 AOD retrievals. Remote Sensing of Environment, 216: 91-104 [DOI: 10.1016/j.rse.2018.06.030http://dx.doi.org/10.1016/j.rse.2018.06.030]
Zhang W T, Zhang X Y, Liu L, Zhao L M and Lu X H. 2018. Spatial variations in NO2 trend in North China Plain based on multi-source satellite remote sensing. Journal of Remote Sensing, 22(2): 335-346
章吴婷, 张秀英, 刘磊, 赵丽敏, 卢学鹤. 2018. 多源卫星遥感的华北平原大气NO2浓度时空变化. 遥感学报, 22(2): 335-346 [DOI: 10.11834/jrs.20187305http://dx.doi.org/10.11834/jrs.20187305]
Zhang X M. 2015. Estimation of Surface NO2 based on Remote Sensing and Atmospheric Transport Model. Nanjing: Nanjing University
张小敏. 2015. 遥感与模型耦合的近地表NO2浓度估算. 南京: 南京大学
Zhang X Y, Chuai X W, Liu L, Zhang W T, Lu X H, Zhao L M and Chen D M. 2018b. Decadal trends in wet sulfur deposition in China estimated from OMI SO2 columns. Journal of Geophysical Research: Atmospheres, 123(18): 10796-10811 [DOI: 10.1029/2018JD028770http://dx.doi.org/10.1029/2018JD028770]
Zhang X Y, Lu X H, Liu L, Chen D M, Zhang X M, Liu X J and Zhang Y. 2017. Dry deposition of NO2 over China inferred from OMI columnar NO2 and atmospheric chemistry transport model. Atmospheric Environment, 169: 238-249 [DOI: 10.1016/j.atmosenv.2017.09.017http://dx.doi.org/10.1016/j.atmosenv.2017.09.017]
Zhang X Y, Zhang W T, Lu X H, Liu X J, Chen D M, Liu L and Huang X J. 2018c. Long-term trends in NO2 columns related to economic developments and air quality policies from 1997 to 2016 in China. Science of the Total Environment, 639: 146-155. [DOI: 10.1016/j.scitotenv.2018.04.435http://dx.doi.org/10.1016/j.scitotenv.2018.04.435]
Zhang X Y, Zhao L M, Cheng M M, Liu H L, Wang Z, Wu X D and Yu H. 2018d. Long-term changes in wet nitrogen and sulfur deposition in Nanjing. Atmospheric Environment, 195: 104-111 [DOI: 10.1016/j.atmosenv.2018.09.048http://dx.doi.org/10.1016/j.atmosenv.2018.09.048]
Zhang Y, Wang T J, Hu Z Y and Xu C K. 2004. Temporal variety and spatial distribution of dry deposition velocities of typical air pollutants over different landuse types. Climatic and Environmental Research, 9(4): 591-604
张艳, 王体健, 胡正义, 徐成凯. 2004. 典型大气污染物在不同下垫面上干沉积速率的动态变化及空间分布. 气候与环境研究, 9(4): 591-604 [DOI: 10.3969/j.issn.1006-9585.2004.04.005http://dx.doi.org/10.3969/j.issn.1006-9585.2004.04.005]
Zhang Y H, Lin J T, Liu M Y, Kong H, Chen L L, Weng H J and Li C J. 2022. High-resolution tropospheric NO2 retrieval over Asia based on OMI POMINO v2.1 and quantitative comparison with other products. Journal of Remote Sensing, 26(5): 971-987
张宇航, 林金泰, 刘梦瑶, 孔浩, 陈璐璐, 翁宏健, 李春锦. 2022. 基于OMI的亚洲地区对流层NO2高分辨率反演产品POMINO v2.1及其与其他产品的定量对比. 遥感学报, 26(5): 971-987 [DOI: 10.11834/jrs.20221413http://dx.doi.org/10.11834/jrs.20221413]
Zhao D W and Sun B Z. 1986. Air pollution and acid rain in China. Ambio, 15(1): 2-5
Zhao Y H, Zhang L, Chen Y F, Liu X J, Xu W, Pan Y P and Duan L. 2017. Atmospheric nitrogen deposition to China: a model analysis on nitrogen budget and critical load exceedance. Atmospheric Environment, 153: 32-40 [DOI: 10.1016/j.atmosenv.2017.01.018http://dx.doi.org/10.1016/j.atmosenv.2017.01.018]ZhengDN, WangXS, XieSD, DuanL and ChenDS. 2014. simulation of atmospheric nitrogen deposition in China in 2010. China Environmental Science, 34(5): 1089-1097
郑丹楠, 王雪松, 谢绍东, 段雷, 陈东升. 2014. 2010年中国大气氮沉降特征分析. 中国环境科学, 34(5): 1089-1097
Zheng Z H, Yang Z W, Wu Z F and Marinello F. 2019. Spatial variation of NO2 and its impact factors in China: an application of Sentinel-5P products. Remote Sensing, 11(16): 1939 [DOI: 10.390/rs11161939http://dx.doi.org/10.390/rs11161939]
相关作者
相关机构