SCIAMACHY临边散射探测的切高校正及敏感性研究
Tangent height correction and sensitivity studies from SCIAMACHY limb scattering detection
- 2023年27卷第10期 页码:2418-2430
纸质出版日期: 2023-10-07
DOI: 10.11834/jrs.20231649
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-10-07 ,
扫 描 看 全 文
朱芳,司福祺,周海金,赵敏杰,窦科,罗宇涵,詹锴.2023.SCIAMACHY临边散射探测的切高校正及敏感性研究.遥感学报,27(10): 2418-2430
Zhu F,Si F Q,Zhou H J,Zhao M J,Dou K,Luo Y H and Zhan K. 2023. Tangent height correction and sensitivity studies from SCIAMACHY limb scattering detection. National Remote Sensing Bulletin, 27(10):2418-2430
针对临边紫外—可见光散射探测仪器在指向过程中由于失准等原因产生的切线高度偏移,提出一种基于UV窄波段的切线高度反演THRUNB(Tangent Height Retrieved by UV Narrow Bands)方法用于校正SCIAMACHY临边辐射切线高度。THRUNB方法通过分析多个紫外波段的临边辐射廓线形状和工程指向信息对切高修正的影响,提出窄波段(300—305 nm)和新的工程切高(43、46、49、52和55 km)使测量矢量即保持较全灵敏度又减少维数。同时采用最优估计算法结合SCIATRAN模型,从临边辐射反演切高偏差。实验结果表明THRUNB法比TRUE (Tangent height Retrieved by UV-B Exploitation)方法进行切高校正的平均精度提高了45%,而算法的运行时间减少了20%。与ESA提供的SCIAMACHY L1B切高信息相比,切高校正的平均偏差小于150 m,说明该方法可以有效减少仪器指向信息错误引起的切高偏差。与Bremen大学提供的SCIAMACHY v3.5的臭氧廓线产品相比,切高校正后的臭氧廓线反演平均误差在13—38 km范围内小于10%;而未校正的臭氧廓线反演误差在该范围内高达22%,说明切高校正能够提高后期大气痕量气体廓线反演的准确度。同时,研究了大气压强、温度和臭氧廓线对切线高度反演的影响,实验结果表明有效的臭氧和中性密度廓线是切线高度校正的关键。
A tangent height retrieved by UV narrow bands (THRUNB) method is proposed to correct the tangent height from SCIAMACHY limb instrument to solve the tangent height offset caused by misalignment and other reasons in the pointing process of limb UV-VIS scattering detection instrument.
In this method
a narrow band (300—305 nm) and a new engineering tangent height sequence (43
46
49
52
and 55 km) are proposed to maintain measurement vectors that are more sensitive and with less dimension by analyzing the influence of the limb radiance profile shape and engineering pointing information of multiple UV bands on the tangent height correction. At the same time
the optimal estimation algorithm combined with SCIATRAN model is used to retrieve the tangent height deviation from the limb radiance.
The experimental results show that the average accuracy of tangent height correction by the THRUNB method is improved by 45%
and the running time of the algorithm is reduced by 20%
compared with TRUE (tangent height retrieved by UV-B exploitation) method. Compared with SCIAMACHY L1B tangent height data provided by ESA
the average deviation of tangent height is less than 150 m. Compared with the SCIAMACHY v3.5 ozone profile product provided by University of Bremen
the average relative error of the retrieved ozone profile with tangent height correction is less than 10% in the range of 13—38 km
and the average relative error without tangent height correction is as high as 22% in the same range. At the same time
the effects of atmospheric pressure
temperature
and ozone profile on tangent height retrieved are investigated. The experimental results show that the influence of pressure and ozone on TH retrieval is positively correlated
whereas the temperature is negatively correlated. The ozone profile has the greatest influence on TH retrieval
followed by pressure and temperature.
The THRUNB method can effectively reduce the tangent height offset caused by the instrument pointing information error. The accuracy of the retrieved atmospheric trace gas profile can be improved by correcting tangent height. The effective ozone and neutral density profiles are very important for tangent height correction.
临边辐射切线高度校正膝点法臭氧廓线大气遥感
limb radiancetangent heightcorrectionknee methodozone profileatmospheric remote sensing
Bourassa A E, Roth C Z, Zawada D J, Rieger L A, McLinden C A and Degenstein D A. 2018. Drift-corrected Odin-OSIRIS ozone product: algorithm and updated stratospheric ozone trends. Atmospheric Measurement Techniques, 11(1): 489-498 [DOI: 10.5194/amt-11-489-2018http://dx.doi.org/10.5194/amt-11-489-2018]
Bovensmann H, Burrows J P, Buchwitz M, Frerick J, Noël S, Rozanov V V, Chance K V and Goede A P H. 1999. SCIAMACHY: mission objectives and measurement modes. Journal of the Atmospheric Sciences, 56(2): 127-150 [DOI: 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2]
Burrows J P, Richter A, Dehn A, Deters B, Himmelmann S, Voigt S and Orphal J. 1999a. Atmospheric remote-sensing reference data from GOME-2. Temperature-dependent absorption cross sections of O3 in the 231-794 nm range. Journal of Quantitative Spectroscopy and Radiative Transfer, 61(4): 509-517 [DOI: 10.1016/S0022-4073(98)00037-5http://dx.doi.org/10.1016/S0022-4073(98)00037-5]
Burrows J P, Weber M, Buchwitz M, Rozanov V, Ladstätter-Weiβenmayer A, Richter A, Debeek R, Hoogen R, Bramstedt K, Eichmann K U, Eisinger M and Perner D. 1999b. The Global Ozone Monitoring Experiment (GOME): mission concept and first scientific results. Journal of the Atmospheric Sciences, 56(2): 151-175 [DOI: 10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2]
Degenstein D A, Bourassa A E, Roth C Z and Llewellyn E J. 2009. Limb scatter ozone retrieval from 10 to 60 km using a multiplicative algebraic reconstruction technique. Atmospheric Chemistry and Physics, 9(17): 6521-6529 [DOI: 10.5194/acp-9-6521-2009http://dx.doi.org/10.5194/acp-9-6521-2009]
Flittner D E, Bhartia P K and Herman B M. 2000. O3 profiles retrieved from limb scatter measurements: theory. Geophysical Research Letters, 27(17): 2601-2604 [DOI: 10.1029/1999GL011343http://dx.doi.org/10.1029/1999GL011343]
Janz S J, Hilsenrath E, Flittner D E and Heath D E. 1996. Rayleigh scattering attitude sensor//Proceedings Volume 2831, Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation. Denver: SPIE: 146-153 [DOI: 10.1117/12.257207http://dx.doi.org/10.1117/12.257207]
Jaross G, Bhartia P K, Chen G, Kowitt M, Haken M, Chen Z, Xu P, Warner J and Kelly T. 2014. OMPS limb profiler instrument performance assessment. Journal of Geophysical Research: Atmospheres, 119(7): 4399-4412 [DOI: 10.1002/2013JD020482http://dx.doi.org/10.1002/2013JD020482]
Kaiser J W, von Savigny C, Eichmann K U, Noël S, Bovensmann H, Frerick J and Burrows J P. 2004. Satellite-pointing retrieval from atmospheric limb-scattering of solar UV-B radiation. Canadian Journal of Physics, 82(12): 1041-1052 [DOI: 10.1139/p04-071http://dx.doi.org/10.1139/p04-071]
Llewellyn E J, Lloyd N D, Degenstein D A, Gattinger R L, Petelina S V, Bourassa A E, Wiensz J T, Ivanov E V, Mcdade I C, Solheim B H, McConnell J C, Haley C S, von Savigny C, Sioris C E, McLinden C A, Griffioen E, Kaminski J, Evans W F J, Puckrin E, Strong K, Wehrle V, Hum R H, Kendall D J W, Matsushita J, Murtagh D P, Brohede S, Stegman J, Witt G, Barnes G, Payne W F, Piché L, Smith K, Warshaw G, Deslauniers D L, Marchand P, Richardson E H, King R A, Wevers I, McCreath W, Kyrölä E, Oikarinen L, Leppelmeier G W, Auvinen H, Mégie G, Hauchecorne A, Lefèvre F, de La Nöe J, Ricaud P, Frisk U, Sjoberg F, von Schéele F and Nordh L. 2004. The OSIRIS instrument on the Odin spacecraft. Canadian Journal of Physics, 82(6): 411-422 [DOI: 10.1139/P04-005http://dx.doi.org/10.1139/P04-005]
McPeters R D, Janz S J, Hilsenrath E, Brown T L, Flittner D E and Heath D F. 2000. The retrieval of O3 profiles from limb scatter measurements: results from the shuttle ozone limb sounding experiment. Geophysical Research Letters, 27(17): 2597-2600 [DOI: 10.1029/1999GL011342http://dx.doi.org/10.1029/1999GL011342]
Merkel A W, Barth C A and Bailey S M. 2001. Altitude determination of ultraviolet measurements made by the Student Nitric Oxide Explorer. Journal of Geophysical Research: Space Physics, 106(A12): 30283-30290 [DOI: 10.1029/2001ja001111http://dx.doi.org/10.1029/2001ja001111]
Miao J, Li X Y, Wang H M, Wang Y P, Zhu S Y and Wang Z H. 2021. Atmospheric water vapor profiles retrieval algorithm for Occultation Satellite-based Infrared Payloads. National Remote Sensing Bulletin, 25(6): 1201-1215
苗晶, 李小英, 王红梅, 王雅鹏, 朱松岩, 王智灏. 2021. GF-5 AIUS水汽廓线反演算法研究. 遥感学报, 25(6): 1201-1215 [DOI: 10.11834/jrs.20218343http://dx.doi.org/10.11834/jrs.20218343]
Moy L, Bhartia P K, Jaross G, Loughman R, Kramarova N, Chen Z, Taha G, Chen G and Xu P. 2017. Altitude registration of limb-scattered radiation. Atmospheric Measurement Techniques, 10(1): 167-178 [DOI: 10.5194/amt-10-167-2017http://dx.doi.org/10.5194/amt-10-167-2017]
Rault D F. 2005. Ozone profile retrieval from Stratospheric Aerosol and Gas Experiment (SAGE III) limb scatter measurements. Journal of Geophysical Research: Atmospheres, 110(D9): D09309 [DOI: 10.1029/2004JD004970http://dx.doi.org/10.1029/2004JD004970]
Rault D F and Taha G. 2007. Validation of ozone profiles retrieved from Stratospheric Aerosol and Gas Experiment III limb scatter measurements. Journal of Geophysical Research: Atmospheres, 112(D13): D13309 [DOI: 10.1029/2006JD007679http://dx.doi.org/10.1029/2006JD007679]
Rodgers C D. 1976. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Reviews of Geophysics, 14(4): 609-624 [DOI: 10.1029/RG014i004p00609http://dx.doi.org/10.1029/RG014i004p00609]
Rodgers C D. 2000. Inverse Methods for Atmospheric Sounding: Theory and Practice. Singapore: World Scientific [DOI: 10.1142/3171http://dx.doi.org/10.1142/3171]
Rohen G J, von Savigny C, Llewellyn E J, Kaiser J W, Eichmann K U, Bracher A, Bovensmann H and Burrows J P. 2006. First results of ozone profiles between 35 and 65km retrieved from SCIAMACHY limb spectra and observations of ozone depletion during the solar proton events in October/November 2003. Advances in Space Research, 37(12): 2263-2268 [DOI: 10.1016/j.asr.2005.03.160http://dx.doi.org/10.1016/j.asr.2005.03.160]
Rozanov A, Rozanov V, Buchwitz M, Kokhanovsky A and Burrows J P. 2005. SCIATRAN 2.0-A new radiative transfer model for geophysical applications in the 175-2400 nm spectral region. Advances in Space Research, 36(5): 1015-1019 [DOI: 10.1016/j.asr.2005.03.012http://dx.doi.org/10.1016/j.asr.2005.03.012]
Rusch D W, Mount G H, Barth C A, Thomas R J and Callan M T. 1984. Solar Mesosphere Explorer Ultraviolet Spectrometer: measurements of ozone in the 1.0-0.1 mbar region. Journal of Geophysical Research: Atmospheres, 89(D7): 11677-11687 [DOI: 10.1029/JD089iD07p11677http://dx.doi.org/10.1029/JD089iD07p11677]
Sioris C E, Haley C S, McLinden C A, von Savigny C, McDade I C, McConnell J C, Evans W F J, Lloyd N D, Llewellyn E J, Chance K V, Kurosu T P, Murtagh D, Frisk U, Pfeilsticker K, Bösch H, Weidner F, Strong K, Stegman J and Mégie G. 2003. Stratospheric profiles of nitrogen dioxide observed by Optical Spectrograph and Infrared Imager System on the Odin satellite. Journal of Geophysical Research: Atmospheres, 108(D7): 4215 [DOI: 10.1029/2002jd002672http://dx.doi.org/10.1029/2002jd002672]
Taha G, Jaross G, Fussen D, Vanhellemont F, Kyrölä E and McPeters R D. 2008. Ozone profile retrieval from GOMOS limb scattering measurements. Journal of Geophysical Research: Atmospheres, 113(D23): D23307 [DOI: 10.1029/2007jd009409http://dx.doi.org/10.1029/2007jd009409]
Thomason L W, Chu W P and Pitts M C. 1997. Stratospheric aerosol and gas experiment III//Proceedings Volume 3495, Satellite Remote Sensing of Clouds and the Atmosphere III. Barcelona: SPIE: 286-291 [DOI: 10.1117/12.332682http://dx.doi.org/10.1117/12.332682]
von Savigny C , Kokhanovsky A , Bovensmann H ,Eichmann K. U , Kaiser J W,Noël S, Rozanov A V, Skupin J, and Burrows J P.2004.NLC detection and particle size determination: first results from SCIAMACHY on ENVISAT.Advances in Space Research, 34(4):851-856
von Savigny C, Kaiser J W, Bovensmann H, Burrows J P, McDermid I S and Leblanc T. 2005b. Spatial and temporal characterization of SCIAMACHY limb pointing errors during the first three years of the mission. Atmospheric Chemistry and Physics, 5(10): 2593-2602 [DOI: 10.5194/acp-5-2593-2005http://dx.doi.org/10.5194/acp-5-2593-2005]
von Savigny C, McDade I C, Griffioen E, Haley C S, Sioris C E and Llewellyn E J. 2005a. Sensitivity studies and first validation of stratospheric ozone profile retrievals from Odin/OSIRIS observations of limb-scattered solar radiation. Canadian Journal of Physics, 83(9): 957-972 [DOI: 10.1139/p05-041http://dx.doi.org/10.1139/p05-041]
Wang Z J, Chen S B, Jin L H and Yang C Y. 2011. Ozone profiles retrieval from SCIAMACHY Chappuis-Wulf limb scattered spectra using MART. Science China Physics, Mechanics and Astronomy, 54(2): 273-280 [DOI: 10.1007/s11433-010-4210-zhttp://dx.doi.org/10.1007/s11433-010-4210-z]
Wuttke M W, Noël S, Skupin J, Gerilowski K, Bovensmann H and Burrows J P. 2004. SCIAMACHY on ENVISAT: instrument monitoring and calibration two years after launch//Proceedings Volume 5570, Sensors, Systems, and Next-Generation Satellites VIII. Maspalomas: SPIE: 391-400 [DOI: 10.1117/12.565504http://dx.doi.org/10.1117/12.565504]
Zhu F, Si F Q, Zhan K, Dou K and Zhou H J. 2021. Inversion of ozone profile of limb radiation in Chappuis-Wulf band. Acta Optica Sinica, 41(4): 0401005
朱芳, 司福祺, 詹锴, 窦科, 周海金. 2021. Chappuis-Wulf波段临边辐射臭氧廓线的反演. 光学学报, 41(4): 0401005 [DOI: 10.3788/AOS202141.0401005http://dx.doi.org/10.3788/AOS202141.0401005]
相关作者
相关机构