高分一号卫星中国植被覆盖度高时空分辨率产品验证与分析
Validation and analysis the fractional vegetation cover product from GF-1 satellite data in China
- 2023年27卷第3期 页码:689-699
纸质出版日期: 2023-03-07
DOI: 10.11834/jrs.20231703
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-03-07 ,
扫 描 看 全 文
赵静,李静,穆西晗,张召星,董亚冬,吴善龙,仲波,柳钦火.2023.高分一号卫星中国植被覆盖度高时空分辨率产品验证与分析.遥感学报,27(3): 689-699
Zhao J,Li J,Mu X H,Zhang Z X,Dong Y D,Wu S L,Zhong B and Liu Q H. 2023. Validation and analysis the fractional vegetation cover product from GF-1 satellite data in China. National Remote Sensing Bulletin, 27(3):689-699
植被覆盖度FVC(Fractional Vegetation Cover)是衡量地表植被状况的重要指标之一。卫星遥感是获取全球与区域动态FVC的主要技术手段,但现有FVC产品空间分辨率主要为中等(300 m)及中低分辨率,难以满足应用需求。已有高分辨率卫星较长的重访周期是制约高分辨率FVC产品难以生产的主要原因。国产高分一号(GF-1)宽幅相机(WFV)具有高时空分辨率特点,16 m空间分辨率和4天重访周期为高时空分辨率FVC产品生产提供数据支撑。本文对中国2018年—2020年16 m/10天GF-1 FVC产品从直接验证和间接验证两方面进行定量分析与评价,结果显示:(1)基于中国甘肃黑河站、吉林净月潭站、河北塞罕坝站等地面实测数据进行直接验证,GF-1 FVC产品精度(
R
2
=0.57,RMSE=0.12,BIAS=-0.03)优于GEOV3 FVC产品,能够降低森林类型高估现象;(2)中国陆地近88%的像元GF-1 FVC产品全年缺失率低于70%,在生长季内约占82.73%的像元缺失率低于73.68%,产品能够较好的体现植被季节变化特征。基于国产GF-1卫星的高时空分辨率FVC产品能够满足植被变化监测相关应用的需求。
Fractional Vegetation Cover (FVC) is a critical parameter for monitoring vegetation growth status. Remote sensing effectively generates FVC at a large scale. However
the spatial resolution of the existing FVC products at the global scale is more than 300 m. The major limitation of the FVC produced from high-spatial-resolution satellite images is the lack of effective observations
mainly due to a small range of view and long periods of revisit time for satellite images with 30 m or higher spatial resolutions. The Chinese GaoFen No. 1 satellite (GF-1) wide-field view data with 16 m spatial resolution and 4-day revisit time provide an available data resource for FVC extraction. The objective of this study is to assess the quality of the 16 m/10-day FVC product based on GF-1 images from 2018 to 2020.
The assessment of the GF-1 FVC product was accomplished through direct validation with ground measurements and indirect validation with the GEOV3 FVC product. Two FVC products were postprocessed with the same temporal (month) and spatial (300 m) resolution to compare GF-1 FVC with 16 m/10-day and GEOV3 FVC with 300 m/10-day. A total of 32 ground measurements (including 18 ground measurements for crops and 14 ground measurements for forest) throughout the growing season at the middle reach of Heihe River Basin
the Jingyuetan station
and the Saihanba plantation forestry farm were used to validate the FVC product in China. The indirect validation was evaluated by the spatial and temporal continuity with missing values and the product consistency with GEOV3 FVC.
The percentage of the annual missing value lower than 70% accounted for 88% of the main land in China. During the growing season
the percentage of the annual missing value lower than 73.68% approached 82.73%. According to different inversion algorithms and input products
the percentage of the average missing value of forest types (
>
20%) was higher than that of nonforest types
such as crops and grassland (
<
10.6%). The GF-1 FVC agreed well with GEOV3 FVC for the nonforest type based on the homogeneous samples in China from January to December 2019. The direct validation results indicated that the accuracy for the FVC product achieved by the GF-1 FVC product is reasonable compared with the ground measurements (
R
2
= 0.57
root mean square error = 0.12
BIAS = -0.03) in China. Moreover
it is better than the accuracy achieved by the GEOV3 FVC product
particularly for forest type.
In conclusion
the GF-1 FVC product of China with 16 m/10-day resolution reflects the seasonal characteristics of vegetation well. Moreover
the GF-1 FVC product with high spatial and temporal resolutions meets the requirements of vegetation monitor at the regional scale.
植被覆盖度(FVC)直接验证间接验证中国高分一号(GF-1)
Fractional Vegetation Cover (FVC)direct validationindirect validationChinaGF-1
Bacour C, Baret F, Béal D, Weiss M and Pavageau K. 2006. Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data: principles and validation. Remote Sensing of Environment, 105(4): 313-325 [DOI: 10.1016/j.rse.2006.07.014http://dx.doi.org/10.1016/j.rse.2006.07.014]
Baret F, Morissette J T, Fernandes R A, Champeaux J L, Myneni R B, Chen J, Plummer S, Weiss M, Bacour C, Garrigues S and Nickeson J E. 2006. Evaluation of the representativeness of networks of sites for the global validation and intercomparison of land biophysical products: proposition of the CEOS-BELMANIP. IEEE Transactions on Geoscience and Remote Sensing, 44(7): 1794-1803 [DOI: 10.1109/tgrs.2006.876030http://dx.doi.org/10.1109/tgrs.2006.876030]
Baret F, Hagolle O, Geiger B, Bicheron P, Miras B, Huc M, Berthelot B, Niño F, Weiss M, Samain O, Roujean J L and Leroy M. 2007. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: principles of the algorithm. Remote Sensing of Environment, 110(3): 275-286 [DOI: 10.1016/j.rse.2007.02.018http://dx.doi.org/10.1016/j.rse.2007.02.018]
Baret F, Weiss M, Lacaze R, Camacho F, Makhmara H, Pacholcyzk P and Smets B. 2013. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: principles of development and production. Remote Sensing of Environment, 137: 299-309 [DOI: 10.1016/j.rse.2012.12.027http://dx.doi.org/10.1016/j.rse.2012.12.027]
Beck H E, Zimmermann N E, McVicar T R, Vergopolan N, Berg A and Wood E F. 2018. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5: 180214 [DOI: 10.1038/sdata.2018.214http://dx.doi.org/10.1038/sdata.2018.214]
Bian J H, Li A N, Zhang Z J, Zhao W, Lei G B, Yin G F, Jin H A, Tan J B and Huang C Q. 2017. Monitoring fractional green vegetation cover dynamics over a seasonally inundated alpine wetland using dense time series HJ-1A/B constellation images and an adaptive endmember selection LSMM model. Remote Sensing of Environment, 197: 98-114 [DOI: 10.1016/j.rse.2017.05.031http://dx.doi.org/10.1016/j.rse.2017.05.031]
Camacho F, Cernicharo J, Lacaze R, Baret F and Weiss M. 2013. GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 2: validation and intercomparison with reference products. Remote Sensing of Environment, 137: 310-329 [DOI: 10.1016/j.rse.2013.02.030http://dx.doi.org/10.1016/j.rse.2013.02.030]
Fuster B, Sánchez-Zapero J, Camacho F, García-Santos V, Verger A, Lacaze R, Weiss M, Baret F and Smets B. 2020. Quality assessment of PROBA-V LAI, fAPAR and fCOVER collection 300 m products of copernicus global land service. Remote Sensing, 12(6): 1017 [DOI: 10.3390/rs12061017http://dx.doi.org/10.3390/rs12061017]
Gitelson A A, Kaufman Y J, Stark R and Rundquist D. 2002. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80(1): 76-87 [DOI: 10.1016/S0034-4257(01)00289-9http://dx.doi.org/10.1016/S0034-4257(01)00289-9]
Jia K, Liang S L, Wei X Q, Yao Y J, Yang L Q, Zhang X T and Liu D Y. 2018. Validation of Global LAnd Surface Satellite (GLASS) fractional vegetation cover product from MODIS data in an agricultural region. Remote Sensing Letters, 9(9): 847-856 [DOI: 10.1080/2150704x.2018.1484958http://dx.doi.org/10.1080/2150704x.2018.1484958]
Jia K, Yang L Q, Liang S L, Xiao Z Q, Zhao X, Yao Y J, Zhang X T, Jiang B and Liu D Y. 2019. Long-term global land surface satellite (GLASS) fractional vegetation cover product derived from MODIS and AVHRR Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(2): 508-518 [DOI: 10.1109/jstars.2018.2854293http://dx.doi.org/10.1109/jstars.2018.2854293]
Jiapaer G, Chen X and Bao A M. 2011. A comparison of methods for estimating fractional vegetation cover in arid regions. Agricultural and Forest Meteorology, 151(12): 1698-1710 [DOI: 10.1016/j.agrformet.2011.07.004http://dx.doi.org/10.1016/j.agrformet.2011.07.004]
Li S Z, Li J, Yu W T, Zhang Z X, Wu S L, Zhong B and Liu Q H. 2022. A dataset of 16 m/10-day normalized difference vegetation index of MuSyQ GF-series (2018—2020, China, version 01). China Scientific Data, 7(1): 231-240
李松泽, 李静, 于文涛, 张召星, 吴善龙, 仲波, 柳钦火. 2022. MuSyQ高分16米空间分辨率10天合成的NDVI植被指数产品(2018年—2020年中国01版). 中国科学数据, 7(1): 231-240 [DOI: 10.11922/csdata.2021.0030.zhhttp://dx.doi.org/10.11922/csdata.2021.0030.zh]
Liu Y K, Mu X H, Wang H X and Yan G J. 2012. A novel method for extracting green fractional vegetation cover from digital images. Journal of Vegetation Science, 23(3): 406-418 [DOI: 10.1111/j.1654-1103.2011.01373.xhttp://dx.doi.org/10.1111/j.1654-1103.2011.01373.x]
Ma P P, Li J, Liu Q H, He B B and Zhao J. 2019. Multisensor synergistic quantitative leaf area index product of China. Journal of Remote Sensing, 23(6): 1232-1252
马培培, 李静, 柳钦火, 何彬彬, 赵静. 2019. 中国区域MuSyQ叶面积指数产品验证与分析. 遥感学报, 23(6): 1232-1252 [DOI: 10.11834/jrs.20198071http://dx.doi.org/10.11834/jrs.20198071]
Mu X H, Huang S, Ren H Z, Yan G J, Song W J and Ruan G Y. 2015. Validating GEOV1 fractional vegetation cover derived from coarse-resolution remote sensing images over croplands. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(2): 439-446 [DOI: 10.1109/jstars.2014.2342257http://dx.doi.org/10.1109/jstars.2014.2342257]
Mu X H, Liu Q H, Ruan G Y, Zhao J, Zhong B, Wu S L and Peng J J. 2017. A 1 km/5 day fractional vegetation cover dataset over China-ASEAN (2013). Journal of Global Change Data and Discovery, 1(1): 45-51
穆西晗, 柳钦火, 阮改燕, 赵静, 仲波, 吴善龙, 彭菁菁. 2017. 中国—东盟1 km分辨率植被覆盖度数据集. 全球变化数据学报, 1(1): 45-51 [DOI: 10.3974/geodp.2017.01.07http://dx.doi.org/10.3974/geodp.2017.01.07]
Mu X H, Zhao T, Ruan G Y, Song J L, Wang J D, Yan G J, Mcvicar T R, Yan K, Gao Z, Liu Y K and Wang Y Y. 2021. High spatial resolution and high temporal frequency (30-m/15-day) fractional vegetation cover estimation over China using multiple remote sensing datasets: method development and validation. Journal of Meteorological Research, 35(1): 128-147 [DOI: 10.1007/s13351-021-0017-2http://dx.doi.org/10.1007/s13351-021-0017-2]
Wang T, Zhou D W, Shen X J, Fan G H and Zhang H. 2020. Koppen’s climate classification map for China. Journal of the Meteorological Sciences, 40(6): 752-760
王婷, 周道玮, 神祥金, 范高华, 张慧. 2020. 中国柯本气候分类. 气象科学, 40(6): 752-760 [DOI: 10.3969/2019jms.0040http://dx.doi.org/10.3969/2019jms.0040]
Weiss M, Baret F, Garrigues S and Lacaze R. 2007. LAI and fAPAR CYCLOPES global products derived from VEGETATION. Part 2: validation and comparison with MODIS collection 4 products. Remote Sensing of Environment, 110(3): 317-331 [DOI: 10.1016/j.rse.2007.03.001http://dx.doi.org/10.1016/j.rse.2007.03.001]
Yang L Q, Jia K, Liang S L, Wei X Q, Yao Y J and Zhang X T. 2017. A robust algorithm for estimating surface fractional vegetation cover from landsat data. Remote Sensing, 9(8): 857 [DOI: 10.3390/rs9080857http://dx.doi.org/10.3390/rs9080857]
Zhang H, Li J, Zhang Z X, Wu S L, Zhong B and Liu Q H. 2022. A dataset of 16m/10-day leaf area indices of MuSyQ GF-series (2018—2020, China, Version 01). China Scientific Data, 7(1): 211-220
张虎, 李静, 张召星, 吴善龙, 仲波, 柳钦火. 2022. MuSyQ高分16米分辨率10天合成的叶面积指数产品(2018—2020年中国01版). 中国科学数据, 7(1): 211-220 [DOI: 10.11922/csdata.2021.0029.zhhttp://dx.doi.org/10.11922/csdata.2021.0029.zh]
Zhao J, Li J, Liu Q H, Xu B D, Yu W T, Lin S R and Hu Z. 2020. Estimating fractional vegetation cover from leaf area index and clumping index based on the gap probability theory. International Journal of Applied Earth Observation and Geoinformation, 90: 102112 [DOI: 10.1016/j.jag.2020.102112http://dx.doi.org/10.1016/j.jag.2020.102112]
Zhao J, Li J, Zhang Z X, Wu S L, Zhong B and Liu Q H. 2022. A dataset of 16 m/10-day fractional vegetation cover of MuSyQ GF-series (2018—2020, China, Version 01). China Scientific Data, 7(1): 221-230
赵静, 李静, 张召星, 吴善龙, 仲波, 柳钦火. 2022. MuSyQ高分16米空间分辨率10天合成的植被覆盖度产品(2018—2020年中国01版). 中国科学数据, 7(1): 221-230 [DOI: 10.11922/11-6035.csd.2021.0037.zhhttp://dx.doi.org/10.11922/11-6035.csd.2021.0037.zh]
相关作者
相关机构