基于多模式雷达遥感的陆表降雨反演研究进展
Development of precipitation retrieval based on multimode radar remote sensing
- 2023年27卷第7期 页码:1574-1589
纸质出版日期: 2023-07-07
DOI: 10.11834/jrs.20231768
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-07-07 ,
扫 描 看 全 文
戴强,刘超楠,张亚茹,朱净萱,张林.2023.基于多模式雷达遥感的陆表降雨反演研究进展.遥感学报,27(7): 1574-1589
Dai Q,Liu C N,Zhang Y R,Zhu J X and Zhang L. 2023. Development of precipitation retrieval based on multimode radar remote sensing. National Remote Sensing Bulletin, 27(7):1574-1589
降雨是地球系统水循环的核心组成要素,也是水文模型和陆面模式最重要的输入项之一。基于雷达遥感的降雨观测作为区域降雨监测的有效手段,为陆表过程模拟、灾害性天气探测和防洪减灾决策提供了良好的数据支撑。近年来,在不同观测需求和降雨应用场景下,雷达所获取的信息逐渐向双偏振、多角度、多频率、多分辨率与多天线等多模式方向发展。由于雷达观测的间接性,以及气象和水文研究对降雨观测时空尺度需求的多样性,从雷达观测的空中水汽到陆表降雨需要经历一系列转换过程,其中产生的大量不确定性,需要进行系统的偏差校正与数据处理,从而提高雷达陆表降雨反演的精度。基于此,本文总结了当下国内外多模式雷达遥感观测技术特点,对多模式雷达陆表降雨反演过程及方法进行了系统梳理,对此过程中的误差因子和校正方法进行了对比分析,最后展望了多模式雷达遥感在降雨观测领域的未来研究趋势。
Rainfall is a key link in the earth’s water cycle and one of the most important inputs to hydrological and land surface models. Thus far
radar-based rainfall information has been widely used in global surface hydrology process simulation
disastrous weather forecast
flood control
and disaster relief because it provides data with a high spatial and temporal resolution that improves rainfall representation. In recent years
precipitation radar has gradually developed in a multiangle
multifrequency
dual-polarization
multiresolution
and multiantenna direction under different meteorological observation requirements and rainfall application scenarios. The radar observes rainfall in the air. Meteorological and hydrological research have different requirements for rainfall observation on the temporal and spatial scales. Thus
a series of conversion processes from radar rainfall observation in the air to the land surface generates considerable uncertainties. Thus
the accuracy of radar precipitation must be improved by systematic deviation corrections and data processing.
In this study
a comprehensive review of the process of radar rainfall inversion aims to provide a general picture of the current state of multimode radar technology. First
the development characteristics of multimode radar remote sensing technology were summarized. Afterward
the basic process of converting aerial rainfall observed by radar to the surface of the land surface was sorted out. Furthermore
we reviewed and summarized the major progress and methods of precipitation radar rainfall inversion. The upscaling and downscaling applications in hydrological and land surface models were compared in the literature review. Then
we analyzed the factors causing the air-land surface rainfall deviation in the radar
such as raindrop evaporation
drift
and fragmentation. The calculation method of raindrop evolution deviation was also summarized. Moreover
we summarized the current methods for correcting radar rainfall based on ground-based reference rainfall
such as the rainfall observed by rain gauges. Finally
on the basis of this review
we discussed the existing major challenges and prospects in multimode radar precipitation
including developing multiscale inversion of surface rainfall
multimodel surface rainfall data fusion
surface rainfall inversion considering microphysical deviation of raindrops
and multimode radar data mining based on machine learning.
天气雷达降雨观测雷达遥感多模式城市洪涝
weather radarradar precipitation estimationradar remote sensingmulti-modeurban waterlogging
Acquaotta F, Baronetti A, Bentivenga M, Fratianni S and Piccarreta M. 2019. Estimation of rainfall erosivity in Piedmont (Northwestern Italy) by using 10-minute fixed-interval rainfall data. Quarterly Journal of the Hungarian Meteorological Service, 123(1): 1-18 [DOI: 10.28974/idojaras.2019.1.1http://dx.doi.org/10.28974/idojaras.2019.1.1]
Adhikari N B and Nakamura K. 2002. Detectable rain range of spaceborne Ka-band radar estimated from TRMM precipitation radar data. Journal of Atmospheric and Oceanic Technology, 19(11): 1878-1885 [DOI: 10.1175/1520-0426(2002)019<1878:DRROSK>2.0.CO;2http://dx.doi.org/10.1175/1520-0426(2002)019<1878:DRROSK>2.0.CO;2]
Atencia A, Mediero L, Llasat M C and Garrote L. 2011. Effect of radar rainfall time resolution on the predictive capability of a distributed hydrologic model. Hydrology and Earth System Sciences, 15(12): 3809-3827 [DOI: 10.5194/hess-15-38092011http://dx.doi.org/10.5194/hess-15-38092011]
Barros A P, Prat O P and Testik F Y. 2010. Size distribution of raindrops. Nature Physics, 6(4): 232 [DOI: 10.1038/nphys1646http://dx.doi.org/10.1038/nphys1646]
Beauchamp R M and Chandrasekar V. 2015. Real-time noise estimation and correction in dual-polarization radar systems. IEEE Transactions on Geoscience and Remote Sensing, 53(11): 6183-6195 [DOI: 10.1109/TGRS.2015.2434880http://dx.doi.org/10.1109/TGRS.2015.2434880]
Borowska L, Zrnić D, Ryzhkov A, Zhang P and Simmer C. 2011. Polarimetric estimates of a 1-month accumulation of light rain with a 3-cm wavelength radar. Journal of Hydrometeorology, 12(5): 1024-1039 [DOI: 10.1175/2011JHM1339.1http://dx.doi.org/10.1175/2011JHM1339.1]
Bringi V N, Rico-Ramirez M A and Thurai M. 2011. Rainfall estimation with an operational polarimetric C-Band radar in the United Kingdom: comparison with a gauge network and error analysis. Journal of Hydrometeorology, 12(5): 935-954 [DOI: 10.1175/JHM-D-10-05013.1http://dx.doi.org/10.1175/JHM-D-10-05013.1]
Cao Q and Qi Y C. 2014. The variability of vertical structure of precipitation in Huaihe River Basin of China: implications from long-term spaceborne observations with TRMM precipitation radar. Water Resources Research, 50(5): 3690-3705 [DOI: 10.1002/2013WR014555http://dx.doi.org/10.1002/2013WR014555]
Chandrasekar V, Bringi V N, Balakrishnan N and Zrnić D S. 1990. Error structure of multiparameter radar and surface measurements of rainfall. Part III: specific differential phase. Journal of Atmospheric and Oceanic Technology, 7(5): 621-629 [DOI: 10.1175/1520-0426(1990)007<0621:ESOMRA>2.0.CO;2http://dx.doi.org/10.1175/1520-0426(1990)007<0621:ESOMRA>2.0.CO;2]
Chen G, Zhao K, Zhang G F, Huang H, Liu S, Wen L, Yang Z L, Yang Z W, Xu L L and Zhu W J. 2017. Improving polarimetric C-band radar rainfall estimation with two-dimensional video disdrometer observations in eastern China. Journal of Hydrometeorology, 18(5): 1375-1391 [DOI: 10.1175/JHM-D-16-0215.1http://dx.doi.org/10.1175/JHM-D-16-0215.1]
Chen H N, Chandrasekar V, Cifelli R and Xie P P. 2020. A machine learning system for precipitation estimation using satellite and ground radar network observations. IEEE Transactions on Geoscience and Remote Sensing, 58(2): 982-994 [DOI: 10.1109/TGRS.2019.2942280http://dx.doi.org/10.1109/TGRS.2019.2942280]
Chen J, Qian W M, Han J C and Lian Z L. 2015. An approach for radar quantitative precipitation estimate based on Z-I relations varying with time and space. Meteorological Monthly, 41(3): 296-303
陈静, 钤伟妙, 韩军彩, 连志鸾. 2015. 基于动态Z-I关系雷达回波定量估测降水方法研究. 气象, 41(3): 296-303 [DOI: 10.7519/j.issn.1000-0516.2015.03.004http://dx.doi.org/10.7519/j.issn.1000-0516.2015.03.004]
Chen X H and Duan X. 2013. Studies on the precipitation estimation in central Yunnan based on satellite and radar data. Meteorological Monthly, 39(2): 203-209
陈小华, 段旭. 2013. 基于卫星和雷达资料估测滇中地区降水量方法研究. 气象, 39(2): 203-209 [DOI: 10.7519/j.issn.1000-0526.2013.02.009http://dx.doi.org/10.7519/j.issn.1000-0526.2013.02.009]
Cheng K H, Fu P L, Hu D M, Bao X J, Zhang Y, Li H W and Huang H. 2020. The Guangzhou phased- array radar networking scheme set-up and observation test. Meteorological Monthly, 46(6): 823-836
程元慧, 傅佩玲, 胡东明, 包晓军, 张羽, 李浩文, 黄辉. 2020. 广州相控阵天气雷达组网方案设计及其观测试验. 气象, 46(6): 823-836 [DOI: 10.7519/j.issn.1000-0526.2020.06.009http://dx.doi.org/10.7519/j.issn.1000-0526.2020.06.009]
Chumchean S, Seed A and Sharma A. 2006. Correcting of real-time radar rainfall bias using a Kalman filtering approach. Journal of Hydrology, 317(1/2): 123-137 [DOI: 10.1016/j.jhydrol.2005.05.013http://dx.doi.org/10.1016/j.jhydrol.2005.05.013]
Cifelli R, Chandrasekar V, Lim S, Kennedy P C, Wang Y and Rutledge S A. 2011. A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. Journal of Atmospheric and Oceanic Technology, 28(3): 352-364 [DOI: 10.1175/2010JTECHA1488.1http://dx.doi.org/10.1175/2010JTECHA1488.1]
Cole S J and Moore R J. 2008. Hydrological modelling using raingauge- and radar-based estimators of areal rainfall. Journal of Hydrology, 358(3/4): 159-181 [DOI: 10.1016/j.jhydrol.2008.05.025http://dx.doi.org/10.1016/j.jhydrol.2008.05.025]
Cunha L K, Smith J A, Baeck M L and Krajewski W F. 2013. An early performance evaluation of the NEXRAD dual-polarization radar rainfall estimates for urban flood applications. Weather and Forecasting, 28(6): 1478-1497 [DOI: 10.1175/WAF-D-13-00046.1http://dx.doi.org/10.1175/WAF-D-13-00046.1]
Dai Q and Han D W. 2014. Exploration of discrepancy between radar and gauge rainfall estimates driven by wind fields. Water Resources Research, 50(11): 8571-8588 [DOI: 10.1002/2014WR015794http://dx.doi.org/10.1002/2014WR015794]
Dai Q, Han D W, Rico-Ramirez M A and Islam T. 2013. The impact of raindrop drift in a three-dimensional wind field on a radar-gauge rainfall comparison. International Journal of Remote Sensing, 34(21): 7739-7760 [DOI: 10.1080/01431161.2013.826838http://dx.doi.org/10.1080/01431161.2013.826838]
Dai Q, Han D W, Rico‐Ramirez M A, Zhuo L, Nanding N & Islam T. 2015. Radar rainfall uncertainty modelling influenced by wind. Hydrological processes, 29(7):1704-1716 [DOI:10.1002/hyp.10292http://dx.doi.org/10.1002/hyp.10292]
Dai Q, Yang Q Q, Han D W, Rico-Ramirez M A and Zhang S L. 2019. Adjustment of radar-gauge rainfall discrepancy due to raindrop drift and evaporation using the weather research and forecasting model and dual-polarization radar. Water Resources Research, 55(11): 9211-9233 [DOI: 10.1029/2019WR025517http://dx.doi.org/10.1029/2019WR025517]
Dinku T, Anagnostou E N and Borga M. 2002. Improving radar-based estimation of rainfall over complex terrain. Journal of Applied Meteorology, 41(12): 1163-1178 [DOI: 10.1175/1520-0450(2002)041<1163:IRBEOR>2.0.CO;2http://dx.doi.org/10.1175/1520-0450(2002)041<1163:IRBEOR>2.0.CO;2]
Durden S L, Tanelli S and Sy O O. 2020. Comparison of GPM DPR and airborne radar observations in OLYMPEX. IEEE Geoscience and Remote Sensing Letters, 17(10): 1707-1711 [DOI: 10.1109/LGRS.2019.2952287http://dx.doi.org/10.1109/LGRS.2019.2952287]
Eliseev B P and Kozlov A I. 2018. On polarization selection of electromagnetic waves and its realizability. Journal of Communications Technology and Electronics, 63(1): 17-20 [DOI: 10.1134/S1064226918010035http://dx.doi.org/10.1134/S1064226918010035]
Fang W, Pang L, Wang N and Yi W N. 2020. Survey on the application of artificial intelligence in precipitation nowcasting. Journal of Nanjing University of Information Science & Technology(Natural Science Edition), 12(4): 406-420
方巍, 庞林, 王楠, 易伟楠. 2020. 人工智能在短临降水预报中应用研究综述.南京信息工程大学学报(自然科学版), 12(4): 406-420 [DOI:10.13878/j.cnki.jnuist.2020.04.002http://dx.doi.org/10.13878/j.cnki.jnuist.2020.04.002]
Fang X, Shao A M, Yue X J and Liu W C. 2018. Statistics of the Z-R relationship for strong convective weather over the Yangtze-Huaihe River basin and its application to radar reflectivity data assimilation for a heavy rain event. Journal of Meteorological Research, 32(4): 598-611 [DOI: 10.1007/s13351-018-7163-1http://dx.doi.org/10.1007/s13351-018-7163-1]
Gao Y F, Chen Y D and Peng T. 2018. Influence of radar rainfall horizontal resolution on hydrological simulation-a case study of Xitiaoxi watershed. Journal of Tropical Meteorology, 34(3): 347-352
高玉芳, 陈耀登, 彭涛. 2018. 雷达估测降雨水平分辨率对径流模拟的影响——以西苕溪流域为例. 热带气象学报, 34(3): 347-352 [DOI: 10.16032/j.issn.1004-4965.2018.03.008http://dx.doi.org/10.16032/j.issn.1004-4965.2018.03.008]
Gerstner E M and Heinemann G. 2008. Real-time areal precipitation determination from radar by means of statistical objective analysis. Journal of Hydrology, 352(3/4): 296-308 [DOI: 10.1016/j.jhydrol.2008.01.016http://dx.doi.org/10.1016/j.jhydrol.2008.01.016]
Gingrey A, Varble A and Zipser E. 2018. Relationships between extreme rain rates and convective intensities from the perspectives of TRMM and WSR-88D Radars. Journal of Applied Meteorology and Climatology, 57(6): 1353-1369 [DOI: 10.1175/JAMC-D-17-0240.1http://dx.doi.org/10.1175/JAMC-D-17-0240.1]
Guo Z Y, Hu S, Liu X T, Chen X D, Zhang H H, Qi T and Zeng G Y. 2021. Improving S-band polarimetric radar monsoon rainfall estimation with two-dimensional video disdrometer observations in South China. Atmosphere, 12(7): 831 [DOI: 10.3390/atmos12070831http://dx.doi.org/10.3390/atmos12070831]
Habib E, Aduvala A V and Meselhe E A. 2008. Analysis of radar rainfall error characteristics and implications for streamflow simulation uncertainty. Hydrological Sciences Journal, 53(3): 568-587 [DOI: 10.1623/hysj.53.3.568http://dx.doi.org/10.1623/hysj.53.3.568]
Han J, Chu Z G, Wang Z H, Xu F, Leng L and Zhu Y Q. 2019. Consistency analysis between ground-based radars and TRMM PR. Journal of the Meteorological Sciences, 39(1): 93-103
韩静, 楚志刚, 王振会, 徐芬, 冷亮, 朱艺青. 2019. 地基雷达与TRMM/PR的一致性分析. 气象科学, 39(1): 93-103 [DOI: 10.3969/2018jms.0009http://dx.doi.org/10.3969/2018jms.0009]
He G X, Li G, Zou X L and Ray P S. 2012. A velocity dealiasing scheme for synthetic C-Band data from China’s new generation weather radar system (CINRAD). Journal of Atmospheric and Oceanic Technology, 29(9): 1263-1274 [DOI: 10.1175/JTECH-D-12-00010.1http://dx.doi.org/10.1175/JTECH-D-12-00010.1]
Hu Q Y, Qi Y C, Wang N and Zhu Z W. 2021. A radar electro magnetic beam non-standard blockage compensated technology based on SRTM terrain data. Advances in Meteorological Science and Technology, 11(3): 135-144
胡启元, 戚友存, 王楠, 朱自伟. 2021. 基于SRTM地形数据的天气雷达电磁波非常规遮挡回波补偿技术研究. 气象科技进展, 11(3): 135-144 [DOI: 10.3969/j.issn.2095-1973.2021.03.016http://dx.doi.org/10.3969/j.issn.2095-1973.2021.03.016]
Huang Y M, Song X F, He Q H and Zhang X P. 2018. Study of sub-cloud evaporation in the Dongting lake basin. Scientia Geographica Sinica, 38(8): 1364-1369
黄一民, 宋献方, 何清华, 章新平. 2018. 洞庭湖流域下落雨滴蒸发研究. 地理科学, 38(8): 1364-1369 [DOI: 10.13249/j.cnki.sgs.2018.08.019http://dx.doi.org/10.13249/j.cnki.sgs.2018.08.019]
Jia X C and Niu S J. 2008. Observational analysis of raindrop size distributions measured at surface and cloud. Transactions of Atmospheric Sciences, 31(6): 865-870
贾星灿, 牛生杰. 2008. 空中、地面雨滴谱特征的观测分析. 南京气象学院学报, 31(6): 865-870 [DOI: 10.13878/j.cnki.dqkxxb.2008.6.014http://dx.doi.org/10.13878/j.cnki.dqkxxb.2008.6.014]
Jiang Q, Bian J C and Li Y. 2020. Establishment of model prototype of raindrop dropping process. Plateau Meteorology, 39(3): 609-619
蒋强, 卞建春, 李艳. 2020. 雨滴下落过程模型雏形的建立. 高原气象, 39(3): 609-619 [DOI: 10.7522/j.issn.1000-0534.2020.00004http://dx.doi.org/10.7522/j.issn.1000-0534.2020.00004.]
Jiao P C, Wang Z H, Chu Z G, Han J, Zhang S and Zhu Y Q. 2016. An interpolation method for weather radar data based on Fourier spectrum analysis. Plateau Meteorology, 35(6): 1683-1693
焦鹏程, 王振会, 楚志刚, 韩静, 张帅, 朱艺青. 2016. 基于傅里叶谱分析的天气雷达图像插值方法. 高原气象, 35(6): 1683-1693 [DOI: 10.7522/j.issn.1000-0534.2015.00108http://dx.doi.org/10.7522/j.issn.1000-0534.2015.00108]
Junyent F and Chandrasekar V. 2016. An examination of precipitation using CSU-CHILL dual-wavelength, dual-polarization radar observations. Journal of Atmospheric and Oceanic Technology, 33(2): 313-329 [DOI: 10.1175/JTECH-D-14-00229.1http://dx.doi.org/10.1175/JTECH-D-14-00229.1]
Kirstetter P E, Gourley J J, Hong Y, Zhang J, Moazamigoodarzi S, Langston C and Arthur A. 2015. Probabilistic precipitation rate estimates with ground-based radar networks. Water Resources Research, 51(3): 1422-1442 [DOI: 10.1002/2014WR015672http://dx.doi.org/10.1002/2014WR015672]
Kitzmiller D, Miller D, Fulton R and Ding F. 2013. Radar and multisensor precipitation estimation techniques in National Weather Service hydrologic operations. Journal of Hydrologic Engineering, 18(2): 133-142 [DOI: 10.1061/(ASCE)HE.1943-5584.0000523http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000523]
Kou L L, Wang Z H, Shen F F and Chu Z G. 2019. High resolution interpolation for weather radar data based on Gaussian-scale mixtures model in wavelet domain. Acta Meteorologica Sinica, 77(1): 142-153
寇蕾蕾, 王振会, 沈菲菲, 楚志刚. 2019. 基于小波域高斯尺度混合模型的天气雷达图像高分辨率插值. 气象学报, 77(1): 142-153 [DOI: 10.11676/qxxb2019.001http://dx.doi.org/10.11676/qxxb2019.001]
Kumjian M R and Ryzhkov A V. 2010. The impact of evaporation on polarimetric characteristics of rain: theoretical model and practical implications. Journal of Applied Meteorology and Climatology, 49(6): 1247-1267 [DOI: 10.1175/2010JAMC2243.1http://dx.doi.org/10.1175/2010JAMC2243.1]
Kusiak A, Wei X P, Verma A P and Roz E. 2013. Modeling and prediction of rainfall using radar reflectivity data: a data-mining approach. IEEE Transactions on Geoscience and Remote Sensing, 51(4): 2337-2342 [DOI: 10.1109/TGRS.2012.2210429http://dx.doi.org/10.1109/TGRS.2012.2210429]
Lack S A and Fox N I. 2007. An examination of the effect of wind-drift on radar-derived surface rainfall estimations. Atmospheric Research, 85(2): 217-229 [DOI: 10.1016/j.atmosres.2006.09.010http://dx.doi.org/10.1016/j.atmosres.2006.09.010]
Lauri T, Koistinen J and Moisseev D. 2012. Advection-based adjustment of radar measurements. Monthly Weather Review, 140(3): 1014-1022 [DOI: 10.1175/MWR-D-11-00045.1http://dx.doi.org/10.1175/MWR-D-11-00045.1]
Li J T, Yang W S, Guo L and Chen Z M. 2000. A study of improving precision of measuring regional precipitation in optimum interpolation method. Chinese Journal of Atmospheric Sciences, 24(2): 263-270
李建通, 杨维生, 郭林, 陈泽面. 2000. 提高最优插值法测量区域降水量精度的探讨. 大气科学, 24(2): 263-270 [DOI: 10.1007/s10011-000-0335-3http://dx.doi.org/10.1007/s10011-000-0335-3]
Li N, Wang Z H, Xu F, Chu Z G, Zhu Y Q and Han J. 2017. The assessment of ground-based weather radar data by comparison with TRMM PR. IEEE Geoscience and Remote Sensing Letters, 14(1): 72-76 [DOI: 10.1109/LGRS.2016.2626320http://dx.doi.org/10.1109/LGRS.2016.2626320]
Li Y J and Guo P W. 2017. Application of downscaling forecast for the north of Zhejiang precipitation in summer based on the BP neural network model. Transactions of Atmospheric Sciences, 40(3): 425-432
黎玥君, 郭品文. 2017. 基于BP神经网络的浙北夏季降尺度降水预报方法的应用. 大气科学学报, 40(3): 425-432 [DOI: 10.13878/j.cnki.dqkxxb.20140324001http://dx.doi.org/10.13878/j.cnki.dqkxxb.20140324001]
Li Z, Zhang Y, Borowska L, Ivić I R, Mirković D, Perera S, Zhang G F and Zrnić D S. 2021. Polarimetric phased array weather radar data quality evaluation through combined analysis, simulation, and measurements. IEEE Geoscience and Remote Sensing Letters, 18(6): 1029-1033 [DOI: 10.1109/LGRS.2020.2990334http://dx.doi.org/10.1109/LGRS.2020.2990334]
Liguori S, Rico-Ramirez M A, Schellart A N A and Saul A J. 2012. Using probabilistic radar rainfall nowcasts and NWP forecasts for flow prediction in urban catchments. Atmospheric Research, 103: 80-95 [DOI: 10.1016/j.atmosres.2011.05.004http://dx.doi.org/10.1016/j.atmosres.2011.05.004]
Liou Y C, Bluestein H B, French M M and Wienhoff Z B. 2018. Single-Doppler velocity retrieval of the wind field in a tornadic supercell using mobile, Phased-Array, Doppler radar data. Journal of Atmospheric and Oceanic Technology, 35(8): 1649-1663 [DOI: 10.1175/JTECH-D-18-0004.1http://dx.doi.org/10.1175/JTECH-D-18-0004.1]
Liou Y C, Chang S F and Sun J Z. 2012. An application of the immersed boundary method for recovering the three-dimensional wind fields over complex terrain using multiple-Doppler radar data. Monthly Weather Review, 140(5): 1603-1619 [DOI: 10.1175/MWR-D-11-00151.1http://dx.doi.org/10.1175/MWR-D-11-00151.1]
Liu J, Song Z Z, Liu D F, Jia C M and Xu S. 1999. Classified Z-I relationship and it's application to the measurement of rainfall by weather radar over the Huaihe river basin. Scientia Meteorologica Sinica, 19(2): 213-220
刘娟, 宋子忠, 刘东风, 贾昌明, 徐胜. 1999. 分组Z-I关系及其在淮河流域雷达测雨中应用. 气象科学, 19(2): 213-220
Liu L P, Wu L L, Wu C, Wang X D, Chen X H, Cao J W and Zhuang W. 2014. Field experiment on convective precipitation by X-Band phased-array radar and preliminary results. Chinese Journal of Atmospheric Sciences, 38(6): 1079-1094
刘黎平, 吴林林, 吴翀, 汪旭东, 陈晓辉, 曹俊武, 庄薇. 2014. X波段相控阵天气雷达对流过程观测外场试验及初步结果分析. 大气科学, 38(6): 1079-1094 [DOI: 10.3878/j.issn.1006-9895.1402.13253http://dx.doi.org/10.3878/j.issn.1006-9895.1402.13253]
Liu L P, Zhang Y and Ding H. 2021. Vertical air motion and raindrop size distribution retrieval using a Ka/Ku dual-wavelength cloud radar and its preliminary application. Chinese Journal of Atmospheric Sciences, 45(5): 1099-1113
刘黎平, 张扬, 丁晗. 2021. Ka/Ku双波段云雷达反演空气垂直运动速度和雨滴谱方法研究及初步应用. 大气科学, 45(5): 1099-1113 [DOI: 10.3878/j.issn.1006-9895.2104.20200http://dx.doi.org/10.3878/j.issn.1006-9895.2104.20200]
Liu X Y, Li H, He P, Li D Y and Zheng Y Y. 2018. Comparison on the precipitation measurement between GPM/DPR and CINRAD radars. Journal of Applied Meteorological Science, 29(6): 667-679
刘晓阳, 李郝, 何平, 李丹杨, 郑媛媛. 2018. GPM/DPR雷达与CINRAD雷达降水探测对比. 应用气象学报, 29(6): 667-679 [DOI: 10.11898/1001-7313.20180603http://dx.doi.org/10.11898/1001-7313.20180603]
Liu Y L, Li C X, Zhang L J, Wen H and Wang S D. 2020. Statistical analysis of terrain blockage impacts on the CINRAD network based on DEM data. Acta Meteorologica Sinica, 78(4): 705-720
柳云雷, 李昌兴, 张乐坚, 文浩, 王曙东. 2020. 基于高分辨率高程数据统计分析新一代天气雷达组网的地形遮挡影响. 气象学报, 78(4): 705-720 [DOI: 10.11676/qxxb2020.037http://dx.doi.org/10.11676/qxxb2020.037]
Low T B and List R. 1982. Collision, coalescence and breakup of raindrops. Part I: experimentally established coalescence efficiencies and fragment size distributions in breakup. Journal of the Atmospheric Sciences, 39(7): 1591-1606 [DOI: 10.1175/1520-0469(1982)039<1591:CCABOR>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1982)039<1591:CCABOR>2.0.CO;2]
Ma H, Wan Q L, Chen Z T, Lin Z M, Chen Z H and Wu J H. 2008. Improving rainfall estimation by radar based on Z-I relation and variation-calibration method. Journal of Tropical Meteorology, 24(5): 546-549
马慧, 万齐林, 陈子通, 林振敏, 陈桢华, 吴嘉豪. 2008. 基于Z-I关系和变分校正法改进雷达估测降水. 热带气象学报, 24(5): 546-549 [DOI: 10.3969/j.issn.1004-4965.2008.05.016http://dx.doi.org/10.3969/j.issn.1004-4965.2008.05.016]
Mahmud M R, Yusof A A M, Reba M N M and Hashim M. 2020. Mapping the daily rainfall over an ungauged tropical Micro Watershed: a downscaling algorithm using GPM data. Water, 12(6): 1661 [DOI: 10.3390/w12061661http://dx.doi.org/10.3390/w12061661]
Marshall J S and Palmer W M K. 1948. The distribution of raindrops with size. Journal of Meteorology, 5(4): 165-166 [DOI: 10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2]
Matrosov S Y. 2015. The use of Cloud Sat data to evaluate retrievals of total ice content in precipitating cloud systems from ground-based operational radar measurements. Journal of Applied Meteorology and Climatology, 54(7): 1663-1674 [DOI: 10.1175/JAMC-D-15-0032.1http://dx.doi.org/10.1175/JAMC-D-15-0032.1]
McFarquhar G M. 2004. A new representation of collision-induced breakup of raindrops and its implications for the shapes of raindrop size distributions. Journal of the Atmospheric Sciences, 61(7): 777-794 [DOI: 10.1175/1520-0469(2004)061<0777:ANROCB>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(2004)061<0777:ANROCB>2.0.CO;2]
Min X X, Ma Z Q, Xu J T, He K, Wang Z G, Huang Q L and Li J. 2020. Spatially downscaling IMERG at daily scale using machine learning approaches over Zhejiang, southeastern China. Frontiers in Earth Science, 8: 146 [DOI: 10.3389/feart.2020.00146http://dx.doi.org/10.3389/feart.2020.00146]
Nourani V, Farshbaf A and Adarsh S. 2020. Spatial downscaling of radar-derived rainfall field by two-dimensional wavelet transform. Hydrology Research, 51(3): 456-469 [DOI: 10.2166/nh.2020.165http://dx.doi.org/10.2166/nh.2020.165]
Pallardy Q and Fox N I. 2018. Accounting for rainfall evaporation using dual-polarization radar and mesoscale model data. Journal of Hydrology, 557: 573-588 [DOI: 10.1016/j.jhydrol.2017.12.058http://dx.doi.org/10.1016/j.jhydrol.2017.12.058]
Piccolo F and Chirico G B. 2005. Sampling errors in rainfall measurements by weather radar. Advances in Geosciences, 2: 151-155 [DOI: 10.5194/adgeo-2-151-2005http://dx.doi.org/10.5194/adgeo-2-151-2005]
Potvin C K, Wicker L J and Shapiro A. 2012. Assessing errors in variational dual-Doppler wind syntheses of supercell thunderstorms observed by storm-scale mobile radars. Journal of Atmospheric and Oceanic Technology, 29(8): 1009-1025 [DOI: 10.1175/JTECH-D-11-00177.1http://dx.doi.org/10.1175/JTECH-D-11-00177.1]
Prat O P and Barros A P. 2009. Exploring the transient behavior of Z–R relationships: implications for radar rainfall estimation. Journal of Applied Meteorology and Climatology, 48(10): 2127 -2143 [DOI: 10.1175/2009JAMC2165.1http://dx.doi.org/10.1175/2009JAMC2165.1]
Pruppacher H R and Pitter R L. 1971. A semi-empirical determination of the shape of cloud and rain drops. Journal of the Atmospheric Sciences, 28(1): 86-94 [DOI: 10.1175/1520-0469(1971)028<0086:ASEDOT>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1971)028<0086:ASEDOT>2.0.CO;2]
Qi Y C. 2012. Improving Radar-Based Precipitation Estimation through VPR Correction. Nanjing: Nanjing University of Information Science and Technology
戚友存. 2012. 通过VPR订正技术提高雷达定量降水估计能力. 南京: 南京信息工程大学
Ren Y J, Yong B, Lu D K and Chen H Q. 2019. Evaluation of the Integrated Multi-satellite Retrievals (IMERG) for Global Precipitation Measurement (GPM) mission over the Mainland China at multiple scales. Journal of Lake Sciences, 31(2): 560-572
任英杰, 雍斌, 鹿德凯, 陈汉清. 2019. 全球降水计划多卫星降水联合反演IMERG卫星降水产品在中国大陆地区的多尺度精度评估. 湖泊科学, 31(2): 560-572 [DOI: 10.18307/2019.0224http://dx.doi.org/10.18307/2019.0224]
Rosenfeld D and Mintz Y. 1988. Evaporation of rain falling from convective clouds as derived from radar measurements. Journal of Applied Meteorology, 27(3): 209-215 [DOI: 10.1175/1520-0450(1988)027<0209:EORFFC>2.0.CO;2http://dx.doi.org/10.1175/1520-0450(1988)027<0209:EORFFC>2.0.CO;2]
Ryzhkov A V and Zrnić D S. 1995. Comparison of dual polarization radar estimators of rain. Journal of Atmospheric and Oceanic Technology, 12(2): 249-256 [DOI: 10.1175/1520-0426(1995)012<0249:CODPRE>2.0.CO;2http://dx.doi.org/10.1175/1520-0426(1995)012<0249:CODPRE>2.0.CO;2]
Ryzhkov A V, Zrnić D S. Precipitation observed in Oklahoma mesoscale convective systems with a polarimetric radar. 1994. Journal of Applied Meteorology and Climatology, 33(4): 455-464[DOI:10.1175/1520-0450(1994)033<0455:POIOMC>2.0.C O;2http://dx.doi.org/10.1175/1520-0450(1994)033<0455:POIOMC>2.0.CO;2]
Ryzhkov A V, Giangrande S E and Schuur T J. 2005. Rainfall estimation with a polarimetric prototype of WSR-88D. Journal of Applied Meteorology, 44(4): 502-515 [DOI: 10.1175/JAM2213.1http://dx.doi.org/10.1175/JAM2213.1]
Ryzhkov A V, Kumjian M R, Ganson S M and Zhang P F. 2013. Polarimetric radar characteristics of melting hail. Part II: practical implications. Journal of Applied Meteorology and Climatology, 52(12): 2871-2886 [DOI: 10.1175/JAMC-D-13-074.1http://dx.doi.org/10.1175/JAMC-D-13-074.1]
Seliga T A and Bringi V N. 1976. Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. Journal of Applied Meteorology and Climatology, 15(1): 69-76 [DOI: 10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2http://dx.doi.org/10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2]
Seo D J. 2013. Conditional bias-penalized kriging (CBPK). Stochastic Environmental Research and Risk Assessment, 27(1): 43-58 [DOI: 10.1007/s00477-012-0567-zhttp://dx.doi.org/10.1007/s00477-012-0567-z]
Seo D J and Breidenbach J P. 2002. Real-time correction of spatially nonuniform bias in radar rainfall data using rain gauge measurements. Journal of Hydrometeorology, 3(2): 93-111 [DOI: 10.1175/1525-7541(2002)003<0093:RTCOSN>2.0.CO;2http://dx.doi.org/10.1175/1525-7541(2002)003<0093:RTCOSN>2.0.CO;2]
Seo B C and Krajewski W F. 2015. Correcting temporal sampling error in radar-rainfall: effect of advection parameters and rain storm characteristics on the correction accuracy. Journal of Hydrology, 531: 272-283 [DOI: 10.1016/j.jhydrol.2015.04.018http://dx.doi.org/10.1016/j.jhydrol.2015.04.018]
Shapiro A, Willingham K M and Potvin C K. 2010. Spatially variable advection correction of radar data. Part I: theoretical considerations. Journal of the Atmospheric Sciences, 67(11): 3445-3456 [DOI: 10.1175/2010JAS3465.1http://dx.doi.org/10.1175/2010JAS3465.1]
Sharifi E, Saghafian B and Steinacker R. 2019. Downscaling satellite precipitation estimates with multiple linear regression, artificial neural networks, and spline interpolation techniques. Journal of Geophysical Research: Atmospheres, 124(2): 789-8 05 [DOI: 10.1029/2018JD028795http://dx.doi.org/10.1029/2018JD028795]
Shi R, Cheng M H, Cui Z H and Liu C H. 2005. Estimation amount of summer regional heavy rainfall using the averages of radar VPRs together with rain gauge adjustment. Journal of Applied Meteorological Science, 16(6): 737-745
史锐, 程明虎, 崔哲虎, 刘朝晖. 2005. 用反射率因子垂直廓线联合雨量计校准估测夏季区域强降水. 应用气象学报, 16(6): 737-745 [DOI: 10.3969/j.issn.1001-7313.2005.06.004http://dx.doi.org/10.3969/j.issn.1001-7313.2005.06.004]
Shimada U, Sawada M and Yamada H. 2016. Evaluation of the accuracy and utility of tropical cyclone intensity estimation using single ground-based Doppler radar observations. Monthly Weather Review, 144(5): 1823-1840 [DOI: 10.1175/MWR-D-15-0254.1http://dx.doi.org/10.1175/MWR-D-15-0254.1]
Shin K, Song J J, Bang W and Lee G. 2021. Quantitative precipitation estimates using machine learning approaches with operational dual-polarization radar data. Remote Sensing, 13(4): 69 4 [DOI: 10.3390/rs13040694http://dx.doi.org/10.3390/rs13040694]
Song Y, Han D W and Zhang J. 2017. Radar and rain gauge rainfall discrepancies driven by changes in atmospheric conditions. Geophysical Research Letters, 44(14): 7303-7309 [DOI: 10.1002/2017GL074493http://dx.doi.org/10.1002/2017GL074493]
Straub W, Beheng K D, Seifert A, Schlottke J and Weigand B. 2010. Numerical investigation of collision-induced breakup of raindrops. Part II: parameterizations of coalescence efficiencies and fragment size distributions. Journal of the Atmospheric Sciences, 67(3): 576-588 [DOI: 10.1175/2009JAS3175.1http://dx.doi.org/10.1175/2009JAS3175.1]
Tang L, Tian Y D, Yan F and Habib E. 2015. An improved procedure for the validation of satellite-based precipitation estimates. Atmospheric Research, 163: 61-73 [DOI: 10.1016/j.atmosres.2014.12.016http://dx.doi.org/10.1016/j.atmosres.2014.12.016]
Tang S X, Lü D R, He J X, Li R and Wang H. 2017. Research of weather radar technology and application on Chinese weather observation. Remote Sensing Technology and Application, 32(1): 1-13
唐顺仙, 吕达仁, 何建新, 李睿, 王皓. 2017. 天气雷达技术研究进展及其在我国天气探测中的应用. 遥感技术与应用, 32(1): 1-13 [DOI: 10.11873/j.issn.1004-0323.2017.1.0001http://dx.doi.org/10.11873/j.issn.1004-0323.2017.1.0001]
Teegavarapu R S V, Meskele T and Pathak C S. 2012. Geo-spatial grid-based transformations of precipitation estimates using spatial interpolation methods. Computers and Geosciences, 40: 28-39 [DOI: 10.1016/j.cageo.2011.07.004http://dx.doi.org/10.1016/j.cageo.2011.07.004]
Testik F Y and Barros A P. 2007. Toward elucidating the microstructure of warm rainfall: a survey. Reviews of Geophysics, 45(2): RG2003 [DOI: 10.1029/2005RG000182http://dx.doi.org/10.1029/2005RG000182]
Testik F Y, Barros A P and Bliven L F. 2011. Toward a physical characterization of raindrop collision outcome regimes. Journal of the Atmospheric Sciences, 68(5): 1097-1113 [DOI: 10.1175/2010JAS3706.1http://dx.doi.org/10.1175/2010JAS3706.1]
Testik F Y and Rahman M K. 2017. First in situ observations of binary raindrop collisions. Geophysical Research Letters, 44(2): 1175-1181 [DOI: 10.1002/2017GL072516http://dx.doi.org/10.1002/2017GL072516]
Villarini G, Seo B C, Serinaldi F and Krajewski W F. 2014. Spatial and temporal modeling of radar rainfall uncertainties. Atmospheric Research, 135-136: 91-101 [DOI: 10.1016/j.atmosres.2013.09.007http://dx.doi.org/10.1016/j.atmosres.2013.09.007]
Wang H J, Shao N and Ran Y B. 2019. Identification of precipitation-clouds based on the dual-polarization Doppler weather radar echoes using deep-learning method. IEEE Access, 7: 12822-12831 [DOI: 10.1109/ACCESS.2018.2867546http://dx.doi.org/10.1109/ACCESS.2018.2867546]
Wang H Y, Li J H and Yang F L. 2014. Overview of support vector machine analysis and algorithm. Application Research of Computers, 31(5): 1281-1286
汪海燕, 黎建辉, 杨风雷. 2014. 支持向量机理论及算法研究综述. 计算机应用研究, 31(5): 1281-1286 [DOI: 10.3969/j.issn.1001-3695.2014.05.001http://dx.doi.org/10.3969/j.issn.1001-3695.2014.05.001]
Wang J, Zhou S D, Yang B, Meng X and Zhou B H. 2016. Nowcasting cloud-to-ground lightning over Nanjing area using S-band dual-polarization Doppler radar. Atmospheric Research, 178-179: 55-64 [DOI: 10.1016/j.atmosres.2016.03.007http://dx.doi.org/10.1016/j.atmosres.2016.03.007]
Wang L, Liu P, Heng Z W and Wang H. 2020. Improving C-band weather radar reflectivity attenuation based on two-dimensional video disdrometer data. Journal of Applied Remote Sensing, 14(2): 024521 [DOI: 10.1117/1.JRS.14.024521http://dx.doi.org/10.1117/1.JRS.14.024521]
Wang L, Wei M, Yang T and Liu P. 2015. Effects of atmospheric refraction on an airborne weather radar detection and correction method. Advances in Meteorology, 2015: 407867 [DOI: 10.1155/2015/407867http://dx.doi.org/10.1155/2015/407867]
Wang L R and Wang L R. 2017. Influence of horizontal distance and altitude on radar rainfall estimation and its correction. Meteorological Monthly, 43(9): 1152-1159
王丽荣, 王立荣. 2017. 水平距离和海拔高度对雷达估测降水影响及订正. 气象, 43(9): 1152-1159 [DOI: 10.7519/j.issn.1000-0526.2017.09.012http://dx.doi.org/10.7519/j.issn.1000-0526.2017.09.012]
Wang Y, Feng Y R, Cai J H and Hu S. 2011. An approach for radar quantitative precipitation estimate based on categorical Z-I relations. Journal of Tropical Meteorology, 27(4): 601-608
汪瑛, 冯业荣, 蔡锦辉, 胡胜. 2011. 雷达定量降水动态分级Z-I关系估算方法. 热带气象学报, 27(4): 601-608 [DOI: 10.3969/j.issn.1004-4965.2011.04.018http://dx.doi.org/10.3969/j.issn.1004-4965.2011.04.018]
Wu D. 1991. The numerical test on evaporation of raindrop beneath cloud. Acta Meteorologica Sinica, 49(1): 116-121
吴兑. 1991. 关于雨滴在云下蒸发的数值试验. 气象学报, 49(1): 116-121
Wu W X, Zou H B, Shan J S and Wu S S. 2018. A dynamical Z-R relationship for precipitation estimation based on radar echo-top height classification. Advances in Meteorology, 2018: 8202031 [DOI: 10.1155/2018/8202031http://dx.doi.org/10.1155/2018/8202031]
Xiao Y J and Liu L P. 2006. Study of methods for interpolating data from weather radar network to 3-D grid and mosaics. Acta Meteorologica Sinica, 64(5): 647-657
肖艳姣, 刘黎平. 2006. 新一代天气雷达网资料的三维格点化及拼图方法研究. 气象学报, 64(5): 647-657
Xie X X, Evaristo R, Troemel S, Saavedra P, Simmer C and Ryzhkov A. 2016. Radar observation of evaporation and implications for quantitative precipitation and cooling rate estimation. Journal of Atmospheric and Oceanic Technology, 33(8): 1779-1792 [DOI: 10.1175/JTECH-D-15-0244.1http://dx.doi.org/10.1175/JTECH-D-15-0244.1]
Xu B L, Liu L P, Wu C D, Wang G L and Xie L Y. 2012. Typhoon detection of radar improved using ultra low elevation angle. Plateau Meteorology, 31(1): 251-257
徐八林, 刘黎平, 吴昌叨, 王改利, 解莉燕. 2012. 超低仰角扫描改进雷达观测台风的探讨. 高原气象, 31(1): 251-257
Xu Z X, Yang L, Lei B, Li X H and Zhen X Q. 2020. An automatic framework of region-of-interest detection and classification for networked X-Band weather radar system. Earth and Space Science, 7(4): e2020EA001181 [DOI: 10.1029/2020EA001181http://dx.doi.org/10.1029/2020EA001181]
Xue C B, Chen X, Wu Y, Xu X S and Gao Y. 2017. Application of radar data assimilation in local severe convective weather forecast. Chinese Journal of Atmospheric Sciences, 41(4): 673-690
薛谌彬, 陈娴, 吴俞, 徐星生, 高勇. 2017. 雷达资料同化在局地强对流预报中的应用. 大气科学, 41(4): 673-690 [DOI: 10.3878/j.issn.1006-9895.1608.15288http://dx.doi.org/10.3878/j.issn.1006-9895.1608.15288]
Yang J H, Gao Y C, Cheng M H and Chai X M. 2009. Beam characteristics analysis on phased array weather radar. Journal of Applied Meteorological Science, 20(1): 119-123
杨金红, 高玉春, 程明虎, 柴秀梅. 2009. 相控阵天气雷达波束特性. 应用气象学报, 20(1): 119-123
Yang M X. 2015. Evaluating Rainfall Interpolation over the Netherlands. Xi’an: Chang’an University
杨梦溪. 2015. 降雨插值方法在荷兰地区的评估. 西安: 长安大学
Yang Q Q, Dai Q, Han D W, Zhu Z Z and Zhang S L. 2020a. Uncertainty analysis of radar rainfall estimates induced by atmospheric conditions using long short-term memory networks. Journal of Hydrology, 590: 125482 [DOI: 10.1016/j.jhydrol.2020.125482http://dx.doi.org/10.1016/j.jhydrol.2020.125482]
Yang X Y, Lu Y, Tan M L, Li X G, Wang G Q and He R M. 2020b. Nine-year systematic evaluation of the GPM and TRMM precipitation products in the Shuaishui river basin in East-Central China. Remote Sensing, 12(6): 1042 [DOI: 10.3390/rs12061042http://dx.doi.org/10.3390/rs12061042]
Yin J P, Unal C and Russchenberg H. 2019. Object-orientated filter design in spectral domain for polarimetric weather radar. IEEE Transactions on Geoscience and Remote Sensing, 57(5): 2725-2740 [DOI: 10.1109/TGRS.2018.2876632http://dx.doi.org/10.1109/TGRS.2018.2876632]
Zhang A Q and Fu Y F. 2018. The structural characteristics of precipitation cases detected by dual-frequency radar of GPM satellite. Chinese Journal of Atmospheric Sciences, 42(1): 33-51
张奡祺, 傅云飞. 2018. GPM卫星双频测雨雷达探测降水结构的个例特征分析. 大气科学, 42(1): 33-51 [DOI: 10.3878/j.issn.1006-9895.1705.16220http://dx.doi.org/10.3878/j.issn.1006-9895.1705.16220]
Zhang W R, Wu C, Liu L P, Zhang X, Biao X J and Huang H. 2021. Research on quantitative comparison and observation precision of dual polarization phased array radar and operational radar. Plateau Meteorology, 40(2): 424-435
张蔚然, 吴翀, 刘黎平, 张羽, 包晓军, 黄辉. 2021. 双偏振相控阵雷达与业务雷达的定量对比及观测精度研究. 高原气象, 40(2): 424-435 [DOI: 10.7522/j.issn.1000-0534.2020.00056http://dx.doi.org/10.7522/j.issn.1000-0534.2020.00056]
Zhang Y, Niu S J and Jia X C. 2013. Spectrum evolution in the raindrop falling process: numerical simulation. Transactions of Atmospheric Sciences, 36(6): 699-707
张宇, 牛生杰, 贾星灿. 2013. 雨滴下落过程谱分布演变的数值模拟. 大气科学学报, 36(6): 699-707 [DOI: 10.13878/j.cnki.dqkxxb.2013.06.006http://dx.doi.org/10.13878/j.cnki.dqkxxb.2013.06.006]
Zhang Y X, Han H B, Guo S Y, Tian J B and Tang W T. 2021. Statistical characteristics of raindrop size distribution and its Z-R relationship for different precipitation clouds in summer in the Qilian Mountains. Arid Zone Research, 38(4): 1048-1057
张玉欣, 韩辉邦, 郭世钰, 田建兵, 唐文婷. 2021. 祁连山南麓夏季不同降水云系雨滴谱特征及其Z-R关系. 干旱区研究, 38(4): 1048-1057 [DOI: 10.13866/j.azr.2021.04.16http://dx.doi.org/10.13866/j.azr.2021.04.16]
Zhao K, Huang H, Wang M J, Lee W C, Chen G, Wen L, Wen J, Zhang G F, Xue M, Yang Z W, Liu L P, Wu C, Hu Z Q and Chen S. 2019. Recent progress in dual-polarization radar research and applications in China. Advances in Atmospheric Sciences, 36(9): 961-974 [DOI: 10.1007/s00376-019-9057-2http://dx.doi.org/10.1007/s00376-019-9057-2]
Zhao R J, Yang H P and Guo Y T. 2005. Display and application of CINRAD product in MICAPS. Meteorological Monthly, 31(2): 31-34
赵瑞金, 杨洪平, 郭亚田. 2005. 新一代天气雷达产品在MICAPS中的显示与调用. 气象, 31(2): 31-34 [DOI: 10.3969/j.issn.1000-0526.2005.02.007http://dx.doi.org/10.3969/j.issn.1000-0526.2005.02.007]
Zhou H G. 2013. Data comparison software system for new generation Doppler weather radar network. Journal of Computer Applications, 33(1): 270-275
周海光. 2013. 新一代多普勒天气雷达网探测数据对比分析系统. 计算机应用, 33(1): 270-275 [DOI: 10.3724.SP.j.1087.2013.00270http://dx.doi.org/10.3724.SP.j.1087.2013.00270]
Zhuang W, Liu L P, Wang G L and Cui Z H. 2013. Radar-derived quantitative precipitation estimation in complex terrain area in Qinghai-Xizang Plateau. Plateau Meteorology, 32(5): 1224-1235
庄薇, 刘黎平, 王改利, 崔哲虎. 2013. 青藏高原复杂地形区雷达估测降水方法研究. 高原气象, 32(5): 1224-1235 [DOI: 10.7522/j.issn.1000-0534.2012.00118http://dx.doi.org/10.7522/j.issn.1000-0534.2012.00118]
Zrnic D S, Melnikov V M, Doviak R J and Palmer R. 2015. Scanning strategy for the multifunction phased-array radar to satisfy aviation and meteorological needs. IEEE Geoscience and Remote Sensing Letters, 12(6): 1204-1208 [DOI: 10.1109/LGRS.2014.2388202http://dx.doi.org/10.1109/LGRS.2014.2388202]
相关作者
相关机构