国产光学卫星正射影像产品及自动生成算法
Digital orthophoto map products and automated generation algorithms of Chinese optical satellites
- 2023年27卷第3期 页码:635-650
纸质出版日期: 2023-03-07
DOI: 10.11834/jrs.20232041
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-03-07 ,
扫 描 看 全 文
龙腾飞,焦伟利,何国金,王桂周,张兆明.2023.国产光学卫星正射影像产品及自动生成算法.遥感学报,27(3): 635-650
Long T F,Jiao W L,He G J,Wang G Z and Zhang Z M. 2023. Digital orthophoto map products and automated generation algorithms of Chinese optical satellites. National Remote Sensing Bulletin, 27(3):635-650
正射校正是卫星遥感影像后续处理、分析与应用的必要基础,而目前光学卫星数据自主定位精度尚不能达到1—2像元,正射影像产品的生产仍需依赖地面控制点对成像几何模型进行修正。针对国产光学卫星数据的现状、特点和应用需求,中国遥感卫星地面站自主研发了国产光学卫星正射影像产品和自动正射系统,本文从精细化影像自动配准、成像几何模型优化、影像正射校正、几何不确定度评估、太阳照射和卫星观测角度计算、基于地理格网的影像剖分等方面对相关产品及其自动生成算法进行介绍。其中,基于L1范数约束最小二乘的RPC模型全参数优化方法,可在影像幅宽较大或几何定标精度不足时获得比常规附加像方仿射变换参数的RPC模型更高的校正精度;提出顾及控制点精度的区域网平差方法,在利用从空间分辨率较低的参考影像获取的控制点修正成像几何模型时,可在满足参考影像几何约束的前提下,通过多次观测减小成像几何模型的随机误差、提高影像的几何定位精度;基于不确定度传播理论,建立了正射影像产品逐像元几何不确定度评估方法。试验结果表明,本文算法可用于规模化的正射影像产品生产,分布于全国不同区域的实测检查点表明所生产的16 m分辨率国产高分正射影像产品绝对几何精度可达到2像元以内。
Orthorectification is the foundation for the subsequent processing
analysis
and application of satellite remote sensing images. However
the accuracy of the autonomous geo-positioning of the optical satellite data cannot reach 1—2 pixels at present. Ground Control Points (GCPs) are still required for correcting the geometric model to generate Digital Orthophoto Map (DOM) products. This study introduces the DOM products of Chinese optical satellites and automated processing algorithms independently developed by China Remote Sensing Satellite Ground Station. Given the current situation
characteristics
and application requirements of the Chinese optical satellite data
a complete and automated DOM generation algorithm has been developed. It consists of several key steps and techniques
including automated GCP collection via accurate image registration
optimization of image geometry model
image orthorectification
pixel-wise geometric uncertainty estimation
pixel-wise solar irradiation and satellite observation angle calculation
and image division and encoding based on a global or regional geographic grid. (1) Given that the conventional affine transformation correction in the image space for the Rational Polynomical Coefficients (RPC) model cannot achieve satisfactory accuracy when applied to perform a geometric model if the swath width of the image is large or the geometric calibration accuracy is insufficient
a full-parameter optimization method of RPC model based on L1-norm constrained least squares (L1LS) is applied to improve the accuracy of the geometric model. (2) A novel block adjustment method that considers the accuracy of GCPs is proposed. When the GCPs obtained from the reference image with the low spatial resolution are used to correct the geometric model
the random error of the geometric model can be reduced through multiple observations under the premise of meeting the geometric constraints of the reference image
thereby improving the geo-positioning accuracy of the image. (3) Based on uncertainty propagation theory
the per-pixel geometric uncertainty is derived from the geometric model
the Digital Elevation Model (DEM) data
and the residual errors of GCPs to enable the geometric accuracy traceability of DOM products. When applied to GF-1 MSS
GF-1 WFV
GF-6 PAN
HJ-2A CCD4
CB-4A MSS
and ZY-1E PAN images
the L1LS-based full-parameter optimization method of the RPC model outperforms the conventional affine transformation correction in the image space for the RPC model
particularly for the images with a large field of view. The proposed block adjustment approach considering the accuracy of GCPs achieves higher accuracy than the ordinary block adjustment method when GCPs are obtained from a reference image with a resolution (10—15 m) lower than that of the target image (2—2.5 m).Conclusion The experimental results show that the algorithm in this study can be used for the large-scale production of orthophoto products. The field-measured checkpoints distributed all over China show that the absolute geometric accuracy of the produced 16 m-resolution DOM products can achieve high accuracy within two pixels.
正射影像区域网平差L1范数国产卫星几何不确定度像元观测角度地理格网
DOMblock adjustmentL1 normChinese satellitegeometric uncertaintypixel observation anglegeographic grid
Alcantarilla P, Nuevo J and Bartoli A. 2013. Fast explicit diffusion for accelerated features in nonlinear scale spaces//Proceedings British Machine Vision Conference 2013. Bristol, UK: BMVA Press
Bay H, Ess A, Tuytelaars T and Van Gool L. 2008. Speeded-up robust features (SURF). Computer Vision and Image Understanding, 110(3): 346-359 [DOI: 10.1016/j.cviu.2007.09.014http://dx.doi.org/10.1016/j.cviu.2007.09.014]
Choate M J, Rengarajan R, Storey J C and Lubke M. 2021. Geometric calibration updates to Landsat 7 ETM+ instrument for Landsat collection 2 products. Remote Sensing, 13(9): 1638 [DOI: 10.3390/rs13091638http://dx.doi.org/10.3390/rs13091638]
Clerc S and MPC Team. 2022. Sentinel-2 L1C data quality report[R/OL]. https://sentinel.esa.int/documents/247904/2488917/Sentinel-2_L1C_Data_Quality_Report/6ad66f15-48ca-4e65-b304-59ef00b7f0e0https://sentinel.esa.int/documents/247904/2488917/Sentinel-2_L1C_Data_Quality_Report/6ad66f15-48ca-4e65-b304-59ef00b7f0e0
DeTone D, Malisiewicz T and Rabinovich A. 2016. Deep image homography estimation[EB/OL]. http://arxiv.org/pdf/1606.03798v1http://arxiv.org/pdf/1606.03798v1
Dong Y Y, Jiao W L, Long T F, Liu L F, He G J, Gong C J and Guo Y T. 2019. Local deep descriptor for remote sensing image feature matching. Remote Sensing, 11(4): 430 [DOI: 10.3390/rs11040430http://dx.doi.org/10.3390/rs11040430]
Dong Y Y, Long T F, Jiao W L, He G J and Zhang Z M. 2018. A novel image registration method based on phase correlation using low-rank matrix factorization with mixture of Gaussian. IEEE Transactions on Geoscience and Remote Sensing, 56(1): 446-460 [DOI: 10.1109/TGRS.2017.2749436http://dx.doi.org/10.1109/TGRS.2017.2749436]
Efron B, Hastie T, Johnstone I and Tibshirani R. 2004. Least angle regression. The Annals of Statistics, 32(2): 407-499 [DOI: 10.1214/009053604000000067http://dx.doi.org/10.1214/009053604000000067]
Fraser C S, Dial G and Grodecki J. 2006. Sensor orientation via RPCs. ISPRS Journal of Photogrammetry and Remote Sensing, 60(3): 182-194 [DOI: 10.1016/j.isprsjprs.2005.11.001http://dx.doi.org/10.1016/j.isprsjprs.2005.11.001]
Fraser C S and Hanley H B. 2005. Bias-compensated RPCs for sensor orientation of high-resolution satellite imagery. Photogrammetric Engineering and Remote Sensing, 71(8): 909-915 [DOI: 10.14358/PERS.71.8.909http://dx.doi.org/10.14358/PERS.71.8.909]
Gascon F, Bouzinac C, Thépaut O, Jung M, Francesconi B, Louis J, Lonjou V, Lafrance B, Massera S, Gaudel-Vacaresse A, Languille F, Alhammoud B, Viallefont F, Pflug B, Bieniarz J, Clerc S, Pessiot L, Trémas T, Cadau E, De Bonis R, Isola C, Martimort P and Fernandez V. 2017. Copernicus sentinel-2A calibration and products validation status. Remote Sensing, 9(6): 584 [DOI: 10.3390/rs9060584http://dx.doi.org/10.3390/rs9060584]
Gong J Y, Wang M and Yang B. 2017. High-precision geometric processing theory and method of high-resolution optical remote sensing satellite imagery without GCP. Acta Geodaetica et Cartographica Sinica, 46(10): 1255-1261
龚健雅, 王密, 杨博. 2017. 高分辨率光学卫星遥感影像高精度无地面控制精确处理的理论与方法. 测绘学报, 46(10): 1255-1261 [DOI: 10.11947/j.AGCS.2017.20170307http://dx.doi.org/10.11947/j.AGCS.2017.20170307]
Grodecki J and Dial G. 2003. Block adjustment of high-resolution satellite images described by rational polynomials. Photogrammetric Engineering and Remote Sensing, 69(1): 59-68 [DOI: 10.14358/PERS.69.1.59http://dx.doi.org/10.14358/PERS.69.1.59]
Gruen A and Akca D. 2005. Least squares 3D surface and curve matching. ISPRS Journal of Photogrammetry and Remote Sensing, 59(3): 151-174 [DOI: 10.1016/j.isprsjprs.2005.02.006http://dx.doi.org/10.1016/j.isprsjprs.2005.02.006]
Islam K T, Wijewickrema S and O'Leary S. 2021. A deep learning based framework for the registration of three dimensional multi-modal medical images of the head. Scientific Reports, 11(1): 1860 [DOI: 10.1038/s41598-021-81044-7http://dx.doi.org/10.1038/s41598-021-81044-7]
Jiang W, He G J, Long T F, Yin R Y, Song X L, Yuan Y Q and Ling S G. 2017. Ortho accuracy validation and analysis of GF-2 PAN imagery based on Beidou satellite navigation system and GPS. Remote Sensing for Land and Resources, 29(3): 211-216
江威, 何国金, 龙腾飞, 尹然宇, 宋小璐, 袁益琴, 凌赛广. 2017. 基于北斗和GPS的高分二号全色影像正射精度验证与分析. 国土资源遥感, 29(3): 211-216 [DOI: 10.6046/gtzyyg.2017.03.31http://dx.doi.org/10.6046/gtzyyg.2017.03.31]
Jiang Y H, Zhang G, Tang X M, Zhu X Y, Qin Q Q, Li D R and Fu X K. 2013. High accuracy geometric calibration of ZY-3 three-line image. Acta Geodaetica et Cartographica Sinica, 42(4): 523-529, 553
蒋永华, 张过, 唐新明, 祝小勇, 秦前清, 李德仁, 付兴科. 2013. 资源三号测绘卫星三线阵影像高精度几何检校. 测绘学报, 42(4): 523-529, 553
Jiao W L, Long T F, He G J, Wang W, Zhang Z M, Wang G Z and Peng Y. 2020. Specifications for the Ready-to-Use (RTU) geogrid product of remote sensing data. China Scientific Data, 5(4): 14-27
焦伟利, 龙腾飞, 何国金, 王威, 张兆明, 王桂周, 彭燕. 2020. 遥感数据即得即用(Ready To Use, RTU)地理格网产品规范. 中国科学数据(中英文网络版), 5(4): 14-27 [DOI: 10.11922/csdata.2020.0028.zhhttp://dx.doi.org/10.11922/csdata.2020.0028.zh]
Jiao W L, Long T F, Ling S G and He G J. 2016. Study on modeling and visualizing the positional uncertainty of remote sensing image//Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Prague, Czech Republic: ISPRS: 305-312 [DOI: 10.5194/isprs-archives-XLI-B2-305-2016http://dx.doi.org/10.5194/isprs-archives-XLI-B2-305-2016]
Justice, C O, Vermote E, Townshend J R G, Defries R, Roy D P, Hall D K, Salomonson V V, Privette J L, Riggs G, Strahler A, Lucht W, Myneni R B, Knyazikhin Y, Running SW, Nemani R R, Wan Z, Huete A R, Leeuwen W, Wolfe R E, Giglio L, Muller J, Lewis P, Barnsley M J, 1998. The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing 36(4): 1228-1249 [DOI: 10.1109/36.701075http://dx.doi.org/10.1109/36.701075]
Kalogirou S A. 2022. Solar thermal systems: components and applications—introduction. Comprehensive Renewable Energy (Second Edition), 3: 1-25 [DOI: 10.1016/B978-0-12-819727-1.00001-7http://dx.doi.org/10.1016/B978-0-12-819727-1.00001-7]
Ku H H. 1966. Notes on the use of propagation of error formulas. Journal of Research of the National Bureau of Standards, Section C: Engineering and Instrumentation, 70C(1966): 1017-1040 [DOI: 10.6028/jres.070c.025http://dx.doi.org/10.6028/jres.070c.025]
Lazaridis G and Petrou M. 2006. Image registration using the Walsh transform. IEEE Transactions on Image Processing, 15(8): 2343-2357 [DOI: 10.1109/TIP.2006.877346http://dx.doi.org/10.1109/TIP.2006.877346]
Li D R and Wang M. 2012. On-orbit geometric calibration and accuracy assessment of ZY-3. Spacecraft Recovery and Remote Sensing, 33(3): 1-6
李德仁, 王密. 2012. “资源三号”卫星在轨几何定标及精度评估. 航天返回与遥感, 33(3): 1-6
Li D R, Wang S G and Zhou Y Q. 2008. An Introduction to Photogrammetry and Remote Sensing. 2nd ed. Beijing: Surveying and Mapping Press: 140-142
李德仁, 王树根, 周月琴. 2008. 摄影测量与遥感概论.2版. 北京: 测绘出版社: 140-142
Li D R, Zhang G, Jiang W S and Yuan X X. 2006. SPOT-5 HRS satellite imagery block adjustment without GCPS or with single GCP. Geomatics and Information Science of Wuhan University, 31(5): 377-381
李德仁, 张过, 江万寿, 袁修孝. 2006. 缺少控制点的SPOT-5 HRS影像RPC模型区域网平差. 武汉大学学报(信息科学版), 31(5): 377-381 [DOI: 10.3969/j.issn.1671-8860.2006.05.001http://dx.doi.org/10.3969/j.issn.1671-8860.2006.05.001]
Li D R, Zhang G, Jiang Y H and Shen X. 2016. Research on image geometric precision of domestic optical satellites. Spacecraft Engineering, 25(1): 1-9
李德仁, 张过, 蒋永华, 沈欣. 2016. 国产光学卫星影像几何精度研究. 航天器工程, 25(1): 1-9 [DOI: 10.3969/j.issn.1673-8748.2016.01.001http://dx.doi.org/10.3969/j.issn.1673-8748.2016.01.001]
Long T F, Jiao W L and He G J. 2015. RPC estimation via ℓ1-norm-regularized least squares (L1LS). IEEE Transactions on Geoscience and Remote Sensing, 53(8): 4554-4567 [DOI: 10.1109/TGRS.2015.2401602http://dx.doi.org/10.1109/TGRS.2015.2401602]
Long T F, Jiao W L, He G J, Yin R Y, Wang G Z and Zhang Z M. 2020. Block adjustment with relaxed constraints from reference images of coarse resolution. IEEE Transactions on Geoscience and Remote Sensing, 58(11): 7815-7828 [DOI: 10.1109/TGRS.2020.2984533http://dx.doi.org/10.1109/TGRS.2020.2984533]
Long T F, Jiao W L, He G J and Zhang Z M. 2016. A fast and reliable matching method for automated georeferencing of remotely-sensed imagery. Remote Sensing, 8(1): 56 [DOI: 10.3390/rs8010056http://dx.doi.org/10.3390/rs8010056]
Long T F, Jiao W L, Zhang Z M and He G J. 2014. Calculation method of zenith angle and azimuth angle of satellite image pixel observation. CH, 201410352963.8
龙腾飞, 焦伟利, 张兆明, 何国金. 2014. 卫星影像像元观测天顶角和方位角的计算方法. 中国, 201410352963.8
Lowe D G. 2004. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2): 91-110 [DOI: 10.1023/B:VISI.0000029664.99615.94http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94]
Michalsky J J. 1988. The Astronomical Almanac's algorithm for approximate solar position (1950-2050). Solar Energy, 40(3): 227-235 [DOI: 10.1016/0038-092X(88)90045-Xhttp://dx.doi.org/10.1016/0038-092X(88)90045-X]
Nan K, Qi H and Ye Y X. 2019. A template matching method of multimodal remote sensing images based on deep convolutional feature representation. Acta Geodaetica et Cartographica Sinica, 48(6): 727-736
南轲, 齐华, 叶沅鑫. 2019. 深度卷积特征表达的多模态遥感影像模板匹配方法. 测绘学报, 48(6): 727-736 [DOI: 10.11947/j.AGCS.2019.20180432http://dx.doi.org/10.11947/j.AGCS.2019.20180432]
Nishihama M, Wolfe R, Solomon D, Patt F, Blanchette J, Fleig A, Masuoka E. 1997. MODIS Level-1A Earth location Algorithm Theoretical Basis Document Version 3.0. (https://eospso.nasa.gov/sites/default/files/atbd/atbd_mod28_v3.pdfhttps://eospso.nasa.gov/sites/default/files/atbd/atbd_mod28_v3.pdf)
Pluim J P W, Maintz J B A and Viergever M A. 2003. Mutual-information-based registration of medical images: a survey. IEEE Transactions on Medical Imaging, 22(8): 986-1004 [DOI: 10.1109/TMI.2003.815867http://dx.doi.org/10.1109/TMI.2003.815867]
Remondino F, El-Hakim S F, Gruen A and Zhang L. 2008. Turning images into 3-D models. IEEE Signal Processing Magazine, 25(4): 55-65 [DOI: 10.1109/MSP.2008.923093http://dx.doi.org/10.1109/MSP.2008.923093]
Schenk T. 2009. Digital Photogrammetry: Background, Fundamentals, Automatic Orientation Procedures. Zheng S Y and Su G Z, trans. Wuhan: Wuhan University Press: 152-153
SchenkT. 2009. 数字摄影测量学: 背景、基础、自动定向过程. 郑顺义, 苏国中, 译. 武汉: 武汉大学出版社: 152-153
Storey J, Choate M and Lee K. 2014. Landsat 8 operational land imager on-orbit geometric calibration and performance. Remote Sensing, 6(11): 11127-11152 [DOI: 10.3390/rs61111127http://dx.doi.org/10.3390/rs61111127]
Storey J C, Rengarajan R and Choate M J. 2019. Bundle adjustment using space-based triangulation method for improving the Landsat global ground reference. Remote Sensing, 11(14): 1640 [DOI: 10.3390/rs11141640http://dx.doi.org/10.3390/rs11141640]
Tang X M, Zhang G, Zhu X Y, Pan H B, Jiang Y H, Zhou P, Wang X and Guo L. 2012. Triple linear-array imaging geometry model of ZiYuan-3 surveying satellite and its validation. Acta Geodaetica et Cartographica Sinica, 41(2): 191-198
唐新明, 张过, 祝小勇, 潘红播, 蒋永华, 周平, 王霞, 郭莉. 2012. 资源三号测绘卫星三线阵成像几何模型构建与精度初步验证. 测绘学报, 41(2): 191-198
Tang X M, Zhou P, Zhang G, Wang X, Jiang Y H, Guo L and Liu S H. 2015. Verification of ZY-3 satellite imagery geometric accuracy without ground control points. IEEE Geoscience and Remote Sensing Letters, 12(10): 2100-2104 [DOI: 10.1109/LGRS.2015.2450251http://dx.doi.org/10.1109/LGRS.2015.2450251]
Teo T A, Chen L C, Liu C L, Tung Y C and Wu W Y. 2010. DEM-aided block adjustment for satellite images with weak convergence geometry. IEEE Transactions on Geoscience and Remote Sensing, 48(4): 1907-1918 [DOI: 10.1109/TGRS.2009.2033935http://dx.doi.org/10.1109/TGRS.2009.2033935]
USGS. 2022. Landsat 9 Data Users Handbook (LSDS-2082 Version 1.0)
Wang B B, Yu W Y, Long X X, Lin J, Wang H B, Song C Y, Chen Q, Ge S L and Li S. 2021. Development of high-resolution satellite ground processing system. National Remote Sensing Bulletin, 25(9): 1946-1963
王冰冰, 喻文勇, 龙小祥, 林军, 王海波, 宋超宇, 陈琦, 葛曙乐, 李帅. 2021. 高分辨率卫星地面处理系统研制. 遥感学报, 25(9): 1946-1963 [DOI: 10.11834/jrs.20210369http://dx.doi.org/10.11834/jrs.20210369]
Wang M, Yang B, Hu F and Zang X. 2014. On-orbit geometric calibration model and its applications for high-resolution optical satellite imagery. Remote Sensing, 6(5): 4391-4408 [DOI: 10.3390/rs6054391http://dx.doi.org/10.3390/rs6054391]
Wang M, Yang B, Li D R, Gong J Y and Pi Y D. 2017. Technologies and applications of block adjustment without control for ZY-3 images covering China. Geomatics and Information Science of Wuhan University, 42(4): 427-433
王密, 杨博, 李德仁, 龚健雅, 皮英冬. 2017. 资源三号全国无控制整体区域网平差关键技术及应用. 武汉大学学报(信息科学版), 42(4): 427-433 [DOI: 10.13203/j.whugis20160534http://dx.doi.org/10.13203/j.whugis20160534]
Wang Z W, Yang G D, Zhang X Q, Wang F Y and Bi Y H. 2021. A comparative research on the accuracty of different geometric correction methods of Gaofen-6 satellite remote sensing image. Global Geology, 40(1): 125-130, 139
王志伟, 杨国东, 张旭晴, 王凤艳, 毕晏珲. 2021. 高分六号卫星遥感影像不同几何校正方法精度对比研究. 世界地质, 40(1): 125-130, 139 [DOI: 10.3969/j.issn.1004-5589.2021.01.013http://dx.doi.org/10.3969/j.issn.1004-5589.2021.01.013]
Wu Y, Zhang Y S, Li K, Yu Y and Lai G L. 2021. Block adjustment of satellite imagery with line-of-sight vector rectification. Acta Geodaetica et Cartographica Sinica, 50(1): 85-96
伍洋, 张永生, 李凯, 于英, 赖广陵. 2021. 附加视线向量修正的卫星影像区域网平差. 测绘学报, 50(1): 85-96 [DOI: 10.11947/j.AGCS.2021.20190093http://dx.doi.org/10.11947/j.AGCS.2021.20190093]
Yan G J, Jiang H L, Yan K, Cheng S Y, Song W J, Tong Y Y, Liu Y N, Qi J B, Mu X H, Zhang W M, Xie D H and Zhou H M. 2021. Review of optical multi-angle quantitative remote sensing. National Remote Sensing Bulletin, 25(1): 83-108
阎广建, 姜海兰, 闫凯, 程诗宇, 宋婉娟, 童依依, 刘雅楠, 漆建波, 穆西晗, 张吴明, 谢东辉, 周红敏, 2021. 多角度光学定量遥感. 遥感学报, 25(1): 83-108 [DOI: 10.11834/jrs.20218355http://dx.doi.org/10.11834/jrs.20218355]
Yang B, Wang M and Pi D Y. 2017. Block-adjustment without GCPs for large-scale regions only based on the virtual control points. Acta Geodaetica et Cartographica Sinica, 46(7): 874-881
杨博, 王密, 皮英冬. 2017. 仅用虚拟控制点的超大区域无控制区域网平差. 测绘学报, 46(7): 874-881 [DOI: 10.11947/j.AGCS.2017.20160588http://dx.doi.org/10.11947/j.AGCS.2017.20160588]
Yao X H, You H J, Wang F, Wu D X and Lu X J. 2018. Multi-observed block adjustment for satellite images without ground control points. Remote Sensing Technology and Application, 33(3): 555-562
姚星辉, 尤红建, 王峰, 吴东霞, 卢晓军. 2018. 多重观测卫星影像的无控区域网平差. 遥感技术与应用, 33(3): 555-562 [DOI: 10.11873/j.issn.1004-0323.2018.3.0555http://dx.doi.org/10.11873/j.issn.1004-0323.2018.3.0555]
Ye Y X, Shan J, Bruzzone L and Shen L. 2017. Robust registration of multimodal remote sensing images based on structural similarity. IEEE Transactions on Geoscience and Remote Sensing, 55(5): 2941-2958 [DOI: 10.1109/TGRS.2017.2656380http://dx.doi.org/10.1109/TGRS.2017.2656380]
Zhang Y N, Hu D Y, Yu C, Duan X, Wang S S and Liu M Q. 2020. High resolution optical remote sensing image geometry correction and accuracy evaluation: Take ZY-3 and Pléiades satellite data as examples. Journal of Capital Normal University (Natural Sciences Edition), 41(3): 37-44
张亚妮, 胡德勇, 于琛, 段欣, 王莎莎, 刘曼晴. 2020. 基于优化有理函数模型的高分辨率遥感影像几何校正及其精度评估——以ZY-3和Pléiades卫星数据为例. 首都师范大学学报(自然科学版), 41(3): 37-44 [DOI: 10.19789/j.1004-9398.2020.03.009http://dx.doi.org/10.19789/j.1004-9398.2020.03.009]
Zhang Z Y. 1994. Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision, 13(2): 119-152 [DOI: 10.1007/BF01427149http://dx.doi.org/10.1007/BF01427149]
Zheng M T, Zhang Y J, Zhu J F, Xiong X D and Zhou S P. 2017. A fast and effective block adjustment method with big data. Acta Geodaetica et Cartographica Sinica, 46(2): 188-197
郑茂腾, 张永军, 朱俊峰, 熊小东, 周顺平. 2017. 一种快速有效的大数据区域网平差方法. 测绘学报, 46(2): 188-197 [DOI: 10.11947/j.AGCS.2017.20160293http://dx.doi.org/10.11947/j.AGCS.2017.20160293]
相关作者
相关机构