Processing math: 100%
 注册 登录 English Version
算法测评与产品检验 | 浏览量 : 0 下载量: 264 CSCD: 0 更多指标
  • 导出

  • 分享

  • 收藏

  • 专辑

    • 西南地区破碎地表空间异质性刻画与空间尺度关系初探

    • Characterize the spatial heterogeneity of fragmented land-surface and its relationship with spatial scale in southwest china

    • 黄雅君

      12

      周伟

      12

      马明国

      12
    • 2023年27卷第3期 页码:802-809   

      纸质出版日期: 2023-03-07

    • DOI: 10.11834/jrs.20232134     

    扫 描 看 全 文

  • 引用

    阅读全文PDF

  • 黄雅君,周伟,马明国.2023.西南地区破碎地表空间异质性刻画与空间尺度关系初探.遥感学报,27(3): 802-809 DOI: 10.11834/jrs.20232134.
    Huang Y J,Zhou W and Ma M G. 2023. Characterize the spatial heterogeneity of fragmented land-surface and its relationship with spatial scale in southwest china. National Remote Sensing Bulletin, 27(3):802-809 DOI: 10.11834/jrs.20232134.
  •  
  •  
    论文导航

    摘要

    尺度效应是定量遥感领域的经典且重要问题之一,其中地表异质性的判断和明确对地表真实性检验和场站优化布设问题的前置工作。并且地表异质性的判断和计算,一般是通过一景低分辨率待检验产品与同步获取的地面测量结果或者高分辨率产品进行尺度转换实现间接表达。然而,由于待检低分辨率与高分辨率遥感影像之间几乎很难做到完全同步。那么如何在缺乏同步产品的基础上,仅利用高分辨率产品去刻画地表异质性,是为下一步对空间异质性进行进一步探索和分析的前提条件。本文针对该问题使用优于0.2 m空间分辨率的无人机光谱反射率数据,计算得到归一化差值植被指数NDVI(Normalized Difference Vegetation Index)数据,通过三次卷积升尺度算法计算获取了0.2—30 m共39个不同空间分辨率结果,通过目视解译获得土地利用/覆盖变化LULC(Land Use and Land Cover change)数据,结合地理探测器对1 km×1 km图幅内的空间异质性行评价。结果表明:3个地形破碎的喀斯特槽谷区,其空间异质性评价值q的阈值存在差异,但总体上q值都随着空间分辨率的提高(30—0.2 m)由震荡趋于平稳; Mann-Kendall突变检测发现,柑橘研究所和虎头村的空间异质性突变点和q值震荡曲线的稳点阈值基本一致。

    Abstract

    Scale effect is one of the classical and important problems in the field of quantitative remote sensing especially in surface validation field, in which the judgment of surface heterogeneity is a precursor to the problems of surface validation and station optimized layout, and is also one of the important error sources of surface parameters validation. The first way is to calculate the accuracy evaluation of the scale transformation results between the medium resolution remote sensing products and the ground measurement results or the very high resolution products acquired at the same time to express spatial heterogeneity indirectly, and a series of errors, such as different sensors optical parameters, different measurement angles, spatial and temporal scale inconsistency, geometric mismatching etc., they all affect the results directly or jointly, and the error contributions are difficult to quantitatively, it means that is difficult to describe the spatial heterogeneity clearly. The second way is to use geostatistical methods to describe the images for evaluation the spatial heterogeneity directly. Then how to express the surface heterogeneity with only very high resolution remote sensing measurement image based on the lack of moderation satellite retrieval products is a workable way to describe to spatial heterogeneity for further exploration and analysis of spatial heterogeneity in the next step. Therefore, this paper uses a typical algorithm to portray spatial heterogeneity and discusses the relationship between spatial resolution and spatial heterogeneity in the absence of a reference base of medium-resolution data, with a view to reflecting the relationship between resolution and spatial heterogeneity and conducting a preliminary analysis. Specifically, this paper calculates Normalized Difference Vegetation Index (NDVI) data using Unmanned Aerial Vehicle(UAV) spectral reflectance data with spatial resolution better than 0.2 m that has been Radiation calibration by reflector plates, and obtains results for 39 different spatial resolutions from 0.2 m to 30 m by cubic convolution upscaling algorithm, and obtains land use and land cover change (LULC) by visual interpretation. The spatial heterogeneity of the 1km×1km map area was evaluated with GeoDetector algorithm, and then the regional spatial heterogeneity was described to explore the relationship between resolution and spatial heterogeneity. The results showed that the thresholds of spatial heterogeneity evaluation q value were different in three regions with fragmented land-surface, but the overall q value tended were oscillate to stable with the increase of spatial resolution (30 m to 0.2 m), and the minimum threshold from oscillation to stability was 2 m resolution; then the change curve of q value with spatial resolution and done M-K mutation detection found that the thresholds and q values of spatial heterogeneity mutation points in Ganyansuo and Hutou Village oscillation curve existed for the oscillation to stable points basically matched, but there were multiple mutation points and mismatched in the Caoshang. There were pass the 5% significance test of M-K test for all three areas, which tested the relationship between q value and spatial resolution in the aforementioned in statistical significance. In conclusion, all this classification system was now regionally stable when the resolution was lower than 2 m, i.e., when the resolution was higher than 2 m, its spatial heterogeneity tends to stable, and its could provide some reference for the sampling of ground and space-based platforms.

    关键词

    地表真实性检验; NDVI; UAV; 空间异质性; 地理探测器; Mann-Kendall突变检测

    Keywords

    surface validation; NDVI; UAV; spatial heterogeneity; geographical detector; M-K test

    1 引言

    地球表面空间作为一个具有很高复杂性的系统,导致在某一尺度上观测到的现象、总结出的规律,在另一尺度上可能无效、可能相似,但是更多情况下需要修正,这就是地理学中普遍存在的尺度问题(

    张仁华 等,2010李小文和王祎婷,2013晋锐 等,2017)。遥感中的尺度问题是导致95%的遥感数据无法得到有效利用并限制遥感应用难以再上新台阶的根本原因之一(苏理宏 等,2001)。目前在定量遥感领域,绝大多数模型和算法均是在特定像元尺度上建立的,盲目地将这些模型应用于其他分辨率遥感数据,必然带来很大的误差,甚至是错误(Raffy,1992)。从狭义上讲,定量遥感反演中的尺度效应可定义为同一区域、同一时间、同样遥感模型、同类遥感数据、同等成像条件,只是分辨率不同导致的遥感反演地表参量不一致,且这种地表参量属于存在物理真值的可标度量(刘良云,2014)。很多研究表明,遥感尺度问题的根源在于地表的空间异质性、反演算法的非线性以及传感器成像过程中的空间响应函数的非线性(吴小丹 等,2015)。其中,地表的空间异质性是一个不可避免且难以定量化的问题。仅以空间异质性为例,全国以一公里为代表,仅以植被和非植被作为端元,对全国进行制图,发现全国的纯净像元仅占34%(于文涛 等,2016吴小丹,2017Yu等,2018)。所以,对空间异质性进行刻画,是明确定量遥感的尺度效应的重要问题之一,也是降低定量遥感反演中的不确定度方法之一。

    对于空间异质性,既往研究证明其对真实性检验有着重要的作用,例如

    吴骅等(2009)经过实验发现使用大尺度数据进行叶面积指数的反演,不同下垫面尺度效应造成的误差会高达45%,严重影响模型的反演精度,同时这些结果显示了不同地物叶面积指数之间的空间异质性。Aman等(1992)通过卫星数据,发现300—1000 m之间的归一化差值植被指数NDVI(Normalized Difference Vegetation Index)数据近似呈线性关系,但是其曲线斜率受到植被覆盖度变化、坡度、坡向的影响,体现出了强烈的地表异质性。所以如何正确或者明确的表达地物在空间尺度上的异质性,就成为阐释尺度问题中必须面对的一个重要的问题。现阶段,对于空间异质性的刻画,主要使用统计学的方法,如地学统计模型对空间异质性进行表达(Garrigues等,2006Li等,2008Jin等,2018)。并且大部分使用拟合系数R2(Coefficient of Determination)、均方根误差RSME(Root Mean Square Error)等对结果直接评价方法(Wu 等,2019)。也有学者提出无参考基准的结果评价方法,使用空间分异代表空间异质性,进而对一个区域的空间异质性进行的解释和表达。例如使用莫兰指数(Moran,1950)、Local indicators of Spatial association(LISA)指数(Anselin,1995)、地理加权回归(Fotheringham 等,2000)、地理探测器(王劲峰和徐成东,2017)等,其核心是利用统计或者地统计方法对空间分异进行评价,进而通过空间分异来表征地表空间异质性。

    在前述诸多定量遥感的反演参量中NDVI作为植被生长状态及植被覆盖度的最佳指示因子,与植被覆盖度、叶面积指数、光合作用光利用效率、生物量、植被初级净生产力和景观物候学参数等密切相关,被广泛应用于环境(气候)变化和农作物估产等领域(

    栾海军 等,2018)。因此,NDVI的空间尺度效应得到广泛关注。关于NDVI的尺度效应中空间异质性的表达,具体通过升尺度算法及结果评价来间接表达:例如耿丽英和马明国(2014)结合MODIS(Moderate-resolution Imaging Spectroradiometer)地表反射率计算得到的1 km分辨率NDVI和Landsat Thematic mapper(TM)计算得到的30 m分辨率的NDVI数据,发现玉米、马铃薯、油菜和大麦等不同的作物的中分辨率成像光谱仪数据具有普遍的尺度效应,且不同地物的空间异质性不同。Wang等(2017)使用0.05 m分辨率的无人机UAV(Unmanned Aerial Vehicle)数据线性升尺度到TM的30 m尺度和MODIS的250 m尺度,发现不同的地物在升尺度的过程存在一定的数值差异,说明地物类型对尺度效应的影响的证据,也间接证明地物的空间异质性对升尺度结果的影响。总结而言,对于空间异质性,它是对于地表真实性检验有着重要影响的因素之一,也是限制定量遥感进一步发展的因素,尤其是大规模应用异源遥感数据进行多尺度反演的重要因素之一。

    本文以重庆市北碚区为研究区,针对西南地区破碎地表空间异质性问题,提出破碎地表空间异质性刻画方法,探讨地表空间异质性与不同分辨率的关系。

    2 数据与方法

    2.1 研究区概况

    研究区位于重庆市北碚区,具体研究区如图1所示,属于典型的喀斯特槽谷地貌。重庆地区常年多云多雨,降水丰沛,气候宜人,所以人类活动较为剧烈,土地利用和土地覆盖LULC(Land Use and Land Cover Change)相较于其他地区更加复杂与破碎。

    fig

    图1  研究区示意图

    Fig. 1  Study area

    icon 下载:  原图 | 高精图 | 低精图

    2.2 无人机影像和LULC数据介绍

    实验使用的无人机载荷为5波段、空间分辨率优于0.2 m、航向重叠率高于85%、旁向重叠率高于75%的极高分辨率的反射率数据。实验设置了3个研究区,依据所属行政区划被命名为槽上生态恢复区(以下简称槽上)、虎头村通量研究区(以下简称虎头村)、西南大学柑橘研究所(以下简称柑研所),分布如图1所示,以通量塔为中心,选取核心的1 km×1 km范围作为研究区。同时依据高分专项LULC共性产品地表真实型检验点和分类体系(该体系依据第三次全国国土调查的分类体系并在它的基础上细化得到),通过目视解译制作3个地区的LULC分类如图2所示。3个地区中,柑研所被分为275个斑块,虎头村被分为207个斑块,槽上被分为205个斑块。然后使用分维数计算三个地区的斑块复杂程度,其值在1—2之间,愈靠近1,斑块形状愈简单,愈靠近2,斑块形状愈复杂(

    Jiang 等,2018)。结果发现柑研所为1.8041,虎头村为1.8821,槽上为1.9021,都属于典型并十分严重的破碎景观区域。

    fig
    icon 下载:  | 高精图 | 低精图

    图2  3个实验区的LULC分类图

    Fig. 2  LULC classification map of the three experimental areas

    2.3 异质性评价方法

    本文提出了在无参考条件下的基于三次卷积重采样的升尺度算法评价结果,具体过程如图3所示。将原有的0.2 m分辨率的NDVI结果,通过三次卷积重采样,将其升尺度为0.2 m,0.3 m,0.4 m,…1 m,2 m,…,30 m(在1 m分辨率,采样间隔为0.1 m,在1 m以上分辨率,采样间隔为1 m)。共计38个尺度,然后使用人工勾绘的1 km×1 km大小的矢量图层进行裁剪,并使用地理探测器计算整个区域的在不同分辨率下的q值,代表该区域内在不同尺度下的空间异质性,并对q值进行分析,具体分析图如图4所示,然后对q值序列进行突变分析,进一步分析其空间异质性的变化规律,具体分析结果如图3所示。

    fig

    图3  试验流程简图(以槽上为例)

    Fig. 3  Schematic diagram of the test flow (take Caoshang as an example)

    icon 下载:  原图 | 高精图 | 低精图
    fig
    icon 下载:  | 高精图 | 低精图

    图4  3个区域的q值变化曲线

    Fig. 4  q value change curve of the three experimental areas

    2.3.1 升尺度算法

    升尺度算法使用三次卷积重采样。公式如式(1)所示。具体参数与过程请参见(

    Reichenbach和Haake,1996)。

    G(n)=-f(n-x)g(x)dx+e(n)
    (1)

    式中,Gn)为所求重采样结果;fx)为原始影像数据,其中n为卷积核的大小;gx)为所需要的求得的对于n的点扩散函数;en)为误差或者噪声。

    2.3.2 地理探测器

    地理探测器是对遥感数据的空间分异的探测,是地表异质性评价的重要方法(

    Wang 等,2016)。具体公式如式(2)所示。

    q=1-Lh=1Nhi=1(Yhi-ˉYh)2Ni=1(Yi-ˉY)2
    (2)

    式中,Yhi为分区内影像辐射值,ˉYh为分区内影像辐射值均值,Yi为影像全部辐射值,ˉY为影像全部辐射值均值,具体而言,就是对影像进行分区域统计并计算区域内的均质化程度,然后用1减去该值得到整个区域内的空间分异。所以,对于求得的q值,假设分母基本保持一致,则区域内越均质,其分子越小,进而q的值越大。

    2.3.3 Mann-Kendall突变检测

    而对于q的变化曲线,结合既往研究,可以使用Mann-Kendall突变检测(以下简称M-K检验)对q值曲线进行分析。M-K检验,其核心为独立q值与整体曲线之间的二阶离散程度的呈现,通过对这个离散程度的展现,集合正反两个方向曲线的叠加,可以明确q值的变化趋势,即空间异质性(空间分异)的变化趋势,而当正反两条曲线叠加时,即发生了突变,即在该尺度下的空间异质性开始出现显著变化。具体的推导过程参见徐建华教授的《计量地理学》一书(

    徐建华,2006)。其核心公式如式(3)所示:

    UFk=[sk-E(sk)]Var(sk)            k=1,2,,n
    (3)

    式中,Esk)、Varsk)为累计数sk的均值与方差,且x1x2,…,xn相互独立,并连续分布。

    3 结果分析

    3.1 空间变异变化曲线分析

    依据式(2)对3个地区不同分辨率的q值曲线进行分析,结果如图4所示:第一,3个地区的q值变化曲线整体呈现随空间分辨率的提升,q值呈现先震荡,后平缓的趋势。第二,柑研所的q值最大为0.5432,对应分辨率为25 m,最小值为0.5003,对应分辨率为22 m,然后从30 m到4 m范围内,q震荡较大,但在4—0.2 m范围内,变化较小。第三,虎头村的q值最大为0.6462,对应空间分辨率为10 m,最小值为0.6027,对应分辨率为22 m,然后其q值在30—3 m范围内,震荡较大,但是在3—0.2 m范围内,变化较小。第四,柑研所q值最大为0.5167,对应空间分辨率为22 m;最小值为0.4754,对应分辨率为21 m;其q值在30—2 m范围内,震荡较大,但是在2—0.2 m范围内,变化较小。综上,3个试验区域的q值发生变化的分辨率在4 m(柑研所)、3 m(虎头村)、2 m(槽上),取最小值,即3个地区在2 m以下分辨率的空间异质性趋于稳定。3个地区的q值,变化趋势一致,但是他们之间横向对比,发现变化规律并不完全一致,3个地区的数值,从大到小排列为虎头村、柑研所,槽上;总结而言,3个地区在本实验勾画出的LULC条件下的,其空间异质性在2 m分辨率以下,趋于平稳。

    3.2 空间变异q值曲线的M-K突变检测

    依据式(3)对3个地区的q值曲线做M-K突变检测,结果如图5所示:第一,柑研所的UBUK曲线,相交在4 m处,交点在临界值之间,且通过了5%的显著性检验;第二,虎头村的UBUK曲线,第一次相交在11 m处,第二次相交在3 m处,交点在临界值之间,且通过了5%的显著性检验;第三,槽上的UBUK曲线,有至少四处交点,交点在临界值之间,但是未通过5%的显著性检验。第四,综合前述中的结论,发现在柑研所,q值随着分辨率变化的震荡曲线,其由震荡转为平稳的阈值和通过M-K突变检测发现的交点一致;第五,虎头村,q值震荡曲线,其由震荡转为平稳的阈值和通过M-K突变检测发现的交点之一一致;第六,槽上,因M-K突变检测曲线因UFUB线多次相交,突变趋势不明确,故不参与讨论。综上所述,能够通过5%显著性检验的M-K突变检测的两个地区,柑研所和虎头村,其突变点和q值震荡曲线的稳点阈值基本一致。

    fig
    icon 下载:  | 高精图 | 低精图

    图5  3个区域M-K分析曲线

    Fig. 5  M-K analysis curve of the three experimental areas

    4 结论

    地表真实性检验,是推动遥感进一步发展重要工作之一,也是解释地表尺度效应的重要工作之一,在地表真实性检验工作中,空间异质性是一个需要着重考虑与分析的工作,本文尝试使用地统计工具,对不同分辨率下的空间异质性进行讨论。本文讨论了一个空间异质性在不同尺度下的表现,并通过对不同分辨率下的空间异质性的模拟,说明了空间异质性的复杂表现,通过现有实验,可以发现,对于空间异质性,随着分辨率的提高(30—0.3 m),其空间异质性存在从震荡到稳定的情况,且存在一个阈值可以区分震荡与稳定的状态,可以为下一步异质地表的真实性检验与优化布设工作提供一定的参考。具体实验过程为使用分辨率优于0.2 m分辨率的NDVI数据,结合LULC结果,使用三次卷积对升尺度结果进行模拟,并使用地理探测器和突变检验对空间异质性进行评价和结果检验。结果发现随着分辨率的提升,利用地理探测器计算的q值曲线,会由震荡趋于稳定。震荡到稳定的阈值在3个地区不相同,其中柑研所为4 m,虎头村为3 m,槽上为2 m,M-K突变检测发现柑研所和虎头村通过了5%显著性检验,其突变点和q值震荡曲线的稳点阈值基本一致。因此,在西南地区的典型地表破碎区域,在1 km×1 km的空间范围内,使用本实验中的LULC得到的分区,进而对整体区域的分异评价值q可以在一定程度上表征空间异质性,且评价结果可以通过M-K突变检测进行验证通过。总结而言,本文在前人研究的基础上,抛弃了原有的需要两个尺度的异源数据来对空间异质性通过真实性检验的精度评价过程进行间接分析的方法,使用地统计方法,直接对空间异质性进行刻画,进而评价空间异质性与分辨率之间的关系,并创新性的通过M-K突变检测,检验该结论在统计学上的合理性。

    本文中的空间异质性,是通过空间分异来进行讨论的,空间分异是在一个固定范围内的地表的具体分布于规律,它认为相同的地物的观测是一致的。而空间异质性指的是空间单元观测值与其他观测单元存在的结构不稳定关系引起的观测值非同质现象,它指的是不同空间分异下的地物观测的异质性。它们二者存在一定的共通性,所以,空间分异能从一个侧面对空间异质性进行刻画。同时由于地物观测存在一定的不确定性,例如系统误差和随机误差等问题,所以通过高分辨率影像通过升尺度算法对不同空间尺度的观测结果的模拟,在一定程度上将空间异质性从一定程度上表达出来。经过本文的模拟,发现不同地区的地物在不同分辨率下的“观测”的空间分异是差异巨大的。下一步需要进一步增加观测的维度,例如地基、空基与天基综合观测平台,减少观测的不确定度,进而推动地表真实性检验工作的进一步发展和深化。

    致谢

    致谢:此次无人机飞行数据由西南大学地理科学学院金佛山国家站无人机团队采集并处理获得,在此表示衷心的感谢!

    参考文献(References)

    Aman A, Randriamanantena H P, Podaire A and Frouin R. 1992. Upscale integration of normalized difference vegetation index: the problem of spatial heterogeneity. IEEE Transactions on Geoscience and Remote Sensing, 30(2): 326-338 [DOI: 10.1109/36.134082] [百度学术] 

    Anselin L. 1995. Local indicators of spatial association-LISA. Geographical Analysis, 27(2): 93-115 [DOI:10.1111/j.1538-4632.1995. tb00338.x] [百度学术] 

    Fotheringham A S, Brunsdon C and Charlton M. 2000. Quantitative Geography: Perspectives on Spatial Data Analysis. London: Sage [百度学术] 

    Garrigues S, Allard D, Baret F and Weiss M. 2006. Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing data. Remote Sensing of Environment, 105(4): 286-298 [DOI: 10.1016/j.rse.2006.07.013] [百度学术] 

    Geng L Y and Ma M G. 2014. Advance in method comparison of reconstructing remote sensing time series data sets. Remote Sensing Technology and Application, 29(2): 362-368 [百度学术] 

    耿丽英, 马明国. 2014. 长时间序列NDVI数据重建方法比较研究进展. 遥感技术与应用, 29(2): 362-368 [DOI:10.11873j.iss n.1004-0323.2014.2.0362] [百度学术] 

    Jiang J L, Ji X S, Yao X, Tian Y C, Zhu Y, Cao W X and Cheng T. 2018. Evaluation of three techniques for correcting the spatial scaling bias of leaf area index. Remote Sensing, 10(2): 221 [DOI: 10.3390/rs10020221] [百度学术] 

    Jin R, Li X, Ma M G, Ge Y, Liu S M, Xiao Q, Wen J G, Zhao K, Xin X P, Ran Y H, Liu Q H and Zhang R H. 2017. Key methods and experiment verification for the validation of quantitative remote sensing products. Advances in Earth Science, 32(6): 630-642 [百度学术] 

    晋锐, 李新, 马明国, 葛咏, 刘绍民, 肖青, 闻建光, 赵凯, 辛晓平, 冉有华, 柳钦火, 张仁华. 2017. 陆地定量遥感产品的真实性检验关键技术与试验验证. 地球科学进展, 32(6): 630-642 [DOI: 10.11867/j.issn.1001-8166.2017.06.0630] [百度学术] 

    Jin Y, Ge Y, Wang J H, Heuvelink G B M and Wang L. 2018. Geographically weighted area-to-point regression kriging for spatial downscaling in remote sensing. Remote Sensing, 10(4): 579 [DOI: 10.3390/rs10040579] [百度学术] 

    Li L F, Wang J F, Cao Z D and Zhong E S. 2008. An information-fusion method to identify pattern of spatial heterogeneity for improving the accuracy of estimation. Stochastic Environmental Research and Risk Assessment, 22(6): 689-704 [DOI: 10.1007/s00477-007-0179-1] [百度学术] 

    Li X W and Wang Y T. 2013. Prospects on future developments of quantitative remote sensing. Acta Geographica Sinica, 68(9): 1163-1169 [百度学术] 

    李小文, 王祎婷. 2013. 定量遥感尺度效应刍议. 地理学报, 68(9): 1163-1169 [DOI: 10.11821/dlxb201309001] [百度学术] 

    Liu L Y. 2014. Simulation and correction of spatial scaling effects for leaf area index. Journal of Remote Sensing, 18(6): 1158-1168 [百度学术] 

    刘良云. 2014. 叶面积指数遥感尺度效应与尺度纠正. 遥感学报, 18(6): 1158-1168 [DOI: 10.11834/jrs.20144103] [百度学术] 

    Luan H J, Tian Q J, Zhang X X, Nie Q and Zhu X L. 2018. Trends on scaling research for land surface parameters in quantitative remote sensing. Advances in Earth Science, 33(5): 483-492 [百度学术] 

    栾海军, 田庆久, 章欣欣, 聂芹, 朱晓玲. 2018. 定量遥感地表参数尺度转换研究趋势探讨. 地球科学进展, 33(5): 483-492 [DOI: 10.11867/j.issn.1001-8166.2018.05.0483] [百度学术] 

    Moran P A P. 1950. Notes on continuous stochastic phenomena. Biometrika, 37(1/2): 17-23 [DOI: 10.1093/biomet/37.1-2.17] [百度学术] 

    Raffy M. 1992. Change of scale in models of remote sensing: a general method for spatialization of models. Remote Sensing of Environment, 40(2): 101-112 [DOI: 10.1016/0034-4257(92)90008-8] [百度学术] 

    Reichenbach S E and Haake K. 1996. Cubic convolution for one-pass restoration and resampling//1996 International Geoscience and Remote Sensing Symposium. Lincoln, NE, USA: IEEE: 1597-1599 [DOI: 10.1109/IGARSS.1996.516742] [百度学术] 

    Su L H, Li X W and Huang Y X. 2001. An review on scale in remote sensing. Advances in Earth Science, 16(4): 544-548 [百度学术] 

    苏理宏, 李小文, 黄裕霞. 2001. 遥感尺度问题研究进展. 地球科学进展, 16(4): 544-548 [DOI: 10.3321/j.issn:1001-8166.2001.04.016] [百度学术] 

    Wang J F and Xu C D. 2017. Geodetector: Principle and prospective. Acta Geographica Sinica, 72(1): 116-134 [百度学术] 

    王劲峰, 徐成东. 2017. 地理探测器: 原理与展望. 地理学报, 72(1): 116-134 [DOI: 10.11821/dlxb201701010] [百度学术] 

    Wang J F, Zhang T L and Fu B J. 2016. A measure of spatial stratified heterogeneity. Ecological Indicators, 67: 250-256 [DOI: 10.1016/j.ecolind.2016.02.052] [百度学术] 

    Wang Y, Ryu D, Park S, Fuentes S and O’Connell M. 2017. Upscaling UAV-borne high resolution vegetation index to satellite resolutions over a vineyard//22nd International Congress on Modelling and Simulation. Hobart, Tasmania, Australia [百度学术] 

    Wu H, Jiang X G, Xi X H, Li C R and Li Z L. 2009. Comparison and analysis of two general scaling methods for remotely sensed information. Journal of Remote Sensing, 13(2): 183-189 [百度学术] 

    吴骅, 姜小光, 习晓环, 李传荣, 李召良. 2009. 两种普适性尺度转换方法比较与分析研究. 遥感学报, 13(2): 183-189 [DOI: 10.11834/jrs.20090235] [百度学术] 

    Wu X D. 2017. Validation of Quantitative Remote Sensing Products Over Heterogeneous Land Surfaces——A Case Study with Surface Albedo. Beijing: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences [百度学术] 

    吴小丹. 2017. 异质性地表定量遥感产品真实性检验方法研究——以地表反照率为例. 北京: 中国科学院遥感与数字地球研究所 [百度学术] 

    Wu X D, Wen J G, Xiao Q, Li X, Liu Q H, Tang Y, Dou B C, Peng J J, You D Q and Li X W. 2015. Advances in validation methods for remote sensing products of land surface parameters. Journal of Remote Sensing, 19(1): 75-92 [百度学术] 

    吴小丹, 闻建光, 肖青, 李新, 刘强, 唐勇, 窦宝成, 彭菁菁, 游冬琴, 李小文. 2015. 关键陆表参数遥感产品真实性检验方法研究进展. 遥感学报, 19(1): 75-92 [DOI: 10.11834/jrs.20154009] [百度学术] 

    Wu X D, Xiao Q, Wen J G, You D Q and Hueni A. 2019. Advances in quantitative remote sensing product validation: overview and current status. Earth-Science Reviews, 196: 102875 [DOI: 10.1016/j.earscirev.2019.102875] [百度学术] 

    Xu J H. 2006. Quantitative Geography. Beijing: Higher Education Press [百度学术] 

    徐建华. 2006. 计量地理学. 北京: 高等教育出版社 [百度学术] 

    Yu W T, Li J, Liu Q H, Zeng Y L, Yin G F, Zhao J and Xu B D. 2016. Extraction and analysis of land cover heterogeneity over China. Advances in Earth Science, 31(10): 1067-1077 [百度学术] 

    于文涛, 李静, 柳钦火, 曾也鲁, 尹高飞, 赵静, 徐保东. 2016. 中国地表覆盖异质性参数提取与分析. 地球科学进展, 31(10): 1067-1077 [DOI: 10.11867/j.issn.1001-8166.2016.10.1067] [百度学术] 

    Yu W T, Li J, Liu Q H, Zeng Y L, Zhao J, Xu B D and Yin G F. 2018. Global land cover heterogeneity characteristics at moderate resolution for mixed pixel modeling and inversion. Remote Sensing, 10(6): 856 [DOI: 10.3390/rs10060856] [百度学术] 

    Zhang R H, Tian J, Li Z L, Su Z B, Chen S H. Principles and methods for the validation of quantitative remote sensing products. Sci China Ser Earth Sci, 2010. (2):211-222 [百度学术] 

    张仁华, 田静, 李召良, 苏红波, 陈少辉. 2010. 定量遥感产品真实性检验的基础与方法. 中国科学: 地球科学. (2):211-222 [DOI:10.1007/s1143 0-010-0021-3] [百度学术] 

    文章被引用时,请邮件提醒。
    提交

    相关作者

    暂无数据

    相关机构

    国家卫星气象中心
    中国科学院空天信息创新研究院 中国科学院定量遥感信息技术重点实验室
    中国科学院大学 光电学院
    东华理工大学 测绘工程学院
    中国科学院空天信息创新研究院 数字地球重点实验室
    0