地理要素分类机器学习方法发展与前景
Development and prospects of machine learning methods in geographic elements classification
- 2023年27卷第8期 页码:1757-1768
纸质出版日期: 2023-08-07
DOI: 10.11834/jrs.20232299
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-08-07 ,
扫 描 看 全 文
王卷乐,李凯,严欣荣,郑莉,韩雪华.2023.地理要素分类机器学习方法发展与前景.遥感学报,27(8): 1757-1768
Wang J L,Li K,Yan X R,Zheng L and Han X H. 2023. Development and prospects of machine learning methods in geographic elements classification. National Remote Sensing Bulletin, 27(8):1757-1768
地理要素一般包括自然和人文两类对象。日益增加的遥感大数据和泛在的社交媒体数据为这两类对象的要素分类提供了丰富的数据源。基于遥感影像分类为主的自然要素提取和基于网络文本和社交媒体的人文要素提取,是当前地理要素分类的两大主流。前者以图像处理技术为支撑,后者则以自然语言处理技术为核心。随着机器学习等人工智能分类方法的介入,两类要素分类呈现越来越多的共性相通特点。本文以机器学习方法的演变历程为媒介,剖析了其在自然地理要素遥感影像分类和人文社会要素网络文本分类方面的异同。以遥感单一对象、复合对象分类和微博社交媒体话题分类提取为实例,指出二者在机器学习分类方法上具有相通性。遥感大数据和网络文本大数据分类方法的相互借鉴能够促进自然与人文地理要素的智能分类应用。
Geographic objects typically include both physical and human elements. The big data produced by remote sensing and the ubiquitous social media data provide rich sources for the feature classification of these two types of objects. The extraction of physical objects based on remote sensing classification and the extraction and classification of social media information based on web text are the current mainstream methods of extracting geographic objects. The former is supported by image processing technology
whereas the latter is achieved using natural language processing technology. With the application of artificial intelligence classification methods such as machine learning
the classification characteristics of these two types of elements are becoming increasingly common. Using the evolution of machine learning methods as a medium
in this study
we compared the remote sensing classification of single- and multiple-element physical geographic elements and the natural language processing classification of web text elements. Since the 1940s
the development of machine learning methods has experienced five stages
namely
germination
development
bottleneck
recovery
and outbreak. Machine learning and related information classification methods have become the current focus of researchers. We described the principle applied by machine learning methods for geographic element classification and divided the classification process of geographic elements into data acquisition
data preprocessing
feature construction or model training
and accuracy evaluation. We observed many similarities between physical-element-oriented remote sensing classification and human-element-oriented text classification in terms of their process and model. However
text and remote sensing classifications also differ in their data and tasks. By using single objects
compound object classification
and microblog social media topic classification extraction as three examples for remote sensing classification
we further examined the process of completing different geographic element classification tasks. We then built a pixel-based CNN model to classify the water bodies in the Tuul River region of Mongolia. Land cover classification mainly adopts random forest
decision tree
maximum likelihood
support vector machine
and pixel-object-knowledge methods to map the global land cover. Social media classification uses latent Dirichlet allocation and a random forest algorithm to classify the public sentiment on COVID-19 topics in microblogs. From the discussion
we noted similarities and differences in the use of machine learning methods for classifying the two types of geographical elements. Remote sensing and text classification are generally consistent
while remote sensing image classification and web-based text classification can learn from each other in many cases. The differences between these methods lie in their focuses on data processing and targeting. Specifically
text classification focuses on word separation and word vector construction
whereas image classification focuses on obtaining feature information
such as the spectrum
textures
and band indices of the target objects. The combination of geographic element classification and artificial intelligence has considerable potential. With the development of big data and the mining and use of multisource heterogeneous data
the multimodal learning of joint text and images can provide new directions and ideas for geographic object research. The integrated fusion of geoscience-domain knowledge and deep learning methods is expected to become a mainstream approach for advancing remote sensing information extraction in the future. The mutual reference among classification methods for remote sensing and social media big data can expand the applications of the intelligent classification of physical and human geographic elements.
地理要素分类自然地理要素人文地理要素机器学习遥感分类网络文本分类自然语言处理
geographic elements classificationphysical geography elementshuman geography elementsmachine learningremote sensing classificationweb text classificationnatural language processing
Adams J B, Sabol D E, Kapos V, Filho R A, Roberts D A, Smith M O and Gillespie A R. 1995. Classification of multispectral images based on fractions of endmembers: application to land-cover change in the Brazilian Amazon. Remote Sensing of Environment, 52(2): 137-154 [DOI: 10.1016/0034-4257(94)00098-8http://dx.doi.org/10.1016/0034-4257(94)00098-8]
Alajlan N, Bazi Y, Melgani F and Yager R R. 2012. Fusion of supervised and unsupervised learning for improved classification of hyperspectral images. Information Sciences, 217: 39-55 [DOI: 10.1016/j.ins.2012.06.031http://dx.doi.org/10.1016/j.ins.2012.06.031]
Bahdanau D, Cho K and Bengio Y. 2016. Neural machine translation by jointly learning to align and translate. arXiv: 1409.0473 [DOI: 10.48550/arXiv.1409.0473http://dx.doi.org/10.48550/arXiv.1409.0473]
Blaschke T. 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1): 2-16 [DOI: 10.1016/j.isprsjprs.2009.06.004http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004]
Breiman L. 1984. Classification and Regression Trees. New York: Routledge [DOI: 10.1201/9781315139470http://dx.doi.org/10.1201/9781315139470]
Breiman L. 1996. Bagging predictors. Machine Learning, 24(2): 123-140 [DOI: 10.1007/BF00058655http://dx.doi.org/10.1007/BF00058655]
Breiman L. 2001. Random forests. Machine Learning, 45(1): 5-32 [DOI: 10.1023/A:1010933404324http://dx.doi.org/10.1023/A:1010933404324]
Chen J, Chen J, Liao A P, Cao X, Chen L J, Chen X H, He C Y, Han G, Peng S, Lu M, Zhang W W, Tong X H and Mills J. 2015. Global land cover mapping at 30 m resolution: a POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing, 103: 7-27 [DOI: 10.1016/j.isprsjprs.2014.09.002http://dx.doi.org/10.1016/j.isprsjprs.2014.09.002]
Chen M, Lv G N, Zhou C H, Lin H, Ma Z Y, Yue S S, Wen Y N, Zhang F Y, Wang J, Zhu Z Y, Xu K and He Y Q. 2021. Geographic modeling and simulation systems for geographic research in the new era: some thoughts on their development and construction. Science China Earth Sciences, 64(8): 1207-1223
陈旻, 闾国年, 周成虎, 林珲, 马载阳, 乐松山, 温永宁, 张丰源, 王进, 朱之一, 许凯, 何元庆. 2021. 面向新时代地理学特征研究的地理建模与模拟系统发展及构建思考. 中国科学: 地球科学, 51(10): 1664-1680 [DOI: 10.1360/SSTe-2020-0264http://dx.doi.org/10.1360/SSTe-2020-0264]
Chi M M, Sun Z Y, Qin Y Q, Shen J S and Benediktsson J A. 2017. A novel methodology to label urban remote sensing images based on location-based social media photos. Proceedings of the IEEE, 105(10): 1926-1936 [DOI: 10.1109/JPROC.2017.2730585http://dx.doi.org/10.1109/JPROC.2017.2730585]
Cortes C and Vapnik V. 1995. Support-vector networks. Machine Learning, 20(3): 273-297 [DOI: 10.1007/BF00994018http://dx.doi.org/10.1007/BF00994018]
Cover T and Hart P. 1967. Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1): 21-27 [DOI: 10.1109/TIT.1967.1053964http://dx.doi.org/10.1109/TIT.1967.1053964]
Du P J, Xia J S, Xue C H, Tan K, Su H J and Bao R. 2016. Review of hyperspectral remote sensing image classification. Journal of Remote Sensing, 20(2): 236-256
杜培军, 夏俊士, 薛朝辉, 谭琨, 苏红军, 鲍蕊. 2016. 高光谱遥感影像分类研究进展. 遥感学报, 20(2): 236-256 [DOI: 10.11834/jrs.20165022http://dx.doi.org/10.11834/jrs.20165022]
Eisenecker U W. 1995. AI: the tumultuous history of the search for artificial intelligence. AI Communications, 8(1): 45-47 [DOI: 10.3233/AIC-1995-8108http://dx.doi.org/10.3233/AIC-1995-8108]
Eismann M T, Stocker A D and Nasrabadi N M. 2009. Automated hyperspectral cueing for civilian search and rescue. Proceedings of the IEEE, 97(6): 1031-1055 [DOI: 10.1109/JPROC.2009.2013561http://dx.doi.org/10.1109/JPROC.2009.2013561]
Estes L D, McRitchie D, Choi J, Debats S, Evans T, Guthe W, Luo D, Ragazzo G, Zempleni R and Caylor K K. 2016. A platform for crowdsourcing the creation of representative, accurate landcover maps. Environmental Modelling and Software, 80: 41-53 [DOI: 10.1016/j.envsoft.2016.01.011http://dx.doi.org/10.1016/j.envsoft.2016.01.011]
Freund Y and Schapire R E. 1997. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1): 119-139 [DOI: 10.1006/jcss.1997.1504http://dx.doi.org/10.1006/jcss.1997.1504]
Fu B J. 2017. Geography: from knowledge, science to decision making support. Acta Geographica Sinica, 72(11): 1923-1932
傅伯杰. 2017. 地理学: 从知识、科学到决策. 地理学报, 72(11): 1923-1932 [DOI: 10.11821/dlxb201711001http://dx.doi.org/10.11821/dlxb201711001]
Fu B J, Leng S Y and Song C Q. 2015. The characteristics and tasks of geography in the new era. Scientia Geographica Sinica, 35(8): 939-945
傅伯杰, 冷疏影, 宋长青. 2015. 新时期地理学的特征与任务. 地理科学, 35(8): 939-945 [DOI: 10.13249/j.cnki.sgs.2015.08.001http://dx.doi.org/10.13249/j.cnki.sgs.2015.08.001]
Gamba P. 2013. Human settlements: a global challenge for EO data processing and interpretation. Proceedings of the IEEE, 101(3): 570-581 [DOI: 10.1109/JPROC.2012.2189089http://dx.doi.org/10.1109/JPROC.2012.2189089]
Gao Y, Xiong J H, Wu H, Zhang Z H, Liu J B and Li X. 2022. Frontier hotspots and development directions of geographical science research: from a perspective of national natural science foundation application keywords in 2021. Scientia Geographica Sinica, 42(1): 15-30
高阳, 熊巨华, 吴浩, 张中浩, 刘建宝, 李鑫. 2022. 2021年度自然科学基金申请书关键词透视地理科学研究前沿热点与发展方向. 地理科学, 42(1): 15-30 [DOI: 10.13249/j.cnki.sgs.2022.01.002http://dx.doi.org/10.13249/j.cnki.sgs.2022.01.002]
Ge Y, Zhang X X, Atkinson P M, Stein A and Li L F. 2022. Geoscience-aware deep learning: a new paradigm for remote sensing. Science of Remote Sensing, 5: 100047 [DOI: 10.1016/j.srs.2022.100047http://dx.doi.org/10.1016/j.srs.2022.100047]
Gong P, Liu H, Zhang M N, Li C C, Wang J, Huang H B, Clinton N, Ji L Y, Li W Y, Bai Y Q, Chen B, Xu B, Zhu Z L, Yuan C, Ping Suen H, Guo J, Xu N, Li W J, Zhao Y Y, Yang J, Yu C Q, Wang X, Fu H H, Yu L, Dronova I, Hui F M, Cheng X, Shi X L, Xiao F J, Liu Q F and Song L C. 2019. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Science Bulletin, 64(6): 370-373 [DOI: 10.1016/j.scib.2019.03.002http://dx.doi.org/10.1016/j.scib.2019.03.002]
Gong P, Wang J, Yu L, Zhao Y C, Zhao Y Y, Liang L, Niu Z G, Huang X M, Fu H H, Liu S, Li C C, Li X Y, Fu W, Liu C X, Xu Y, Wang X Y, Cheng Q, Hu L Y, Yao W B, Zhang H, Zhu P, Zhao Z Y, Zhang H Y, Zheng Y M, Ji L Y, Zhang Y W, Chen H, Yan A, Guo J H, Yu L, Wang L, Liu X J, Shi T T, Zhu M H, Chen Y L, Yang G W, Tang P, Xu B, Giri C, Clinton N, Zhu Z L, Chen J and Chen J. 2013. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing, 34(7): 2607-2654 [DOI: 10.1080/01431161.2012.748992http://dx.doi.org/10.1080/01431161.2012.748992]
Hinton G E and Salakhutdinov R R. 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786): 504-507 [DOI: 10.1126/science.1127647http://dx.doi.org/10.1126/science.1127647]
Huang Z, Qi H J, Kang C G, Su Y L and Liu Y. 2020. An ensemble learning approach for urban land use mapping based on remote sensing imagery and social sensing data. Remote Sensing, 12(19): 3254 [DOI: 10.3390/rs12193254http://dx.doi.org/10.3390/rs12193254]
Joachims T. 2002. Optimizing search engines using clickthrough data//Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton: Association for Computing Machinery: 133-142 [DOI: 10.1145/775047.775067http://dx.doi.org/10.1145/775047.775067]
Kim Y. 2014. Convolutional neural networks for sentence classification//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha: Association for Computational Linguistics: 1746-1751 [DOI: 10.3115/v1/D14-1181http://dx.doi.org/10.3115/v1/D14-1181]
Lecun Y, Boser B, Denker J S, Henderson D, Howard R E, Hubbard W and Jackel L D. 1989. Back-propagation applied to handwritten zip code recognition. Neural Computation, 1(4): 541-551 [DOI: 10.1162/neco.1989.1.4.541http://dx.doi.org/10.1162/neco.1989.1.4.541]
Legleiter C J, King T V, Carpenter K D, Hall N C, Mumford A C, Slonecker T, Graham J L, Stengel V G, Simon N and Rosen B H. 2022. Spectral mixture analysis for surveillance of harmful algal blooms (SMASH): a field-, laboratory-, and satellite-based approach to identifying cyanobacteria genera from remotely sensed data. Remote Sensing of Environment, 279: 113089 [DOI: 10.1016/j.rse.2022.113089http://dx.doi.org/10.1016/j.rse.2022.113089]
Li J, Benediktsson J A, Zhang B, Yang T and Plaza A. 2017. Spatial technology and social media in remote sensing: a survey. Proceedings of the IEEE, 105(10): 1855-1864 [DOI: 10.1109/JPROC.2017.2729890http://dx.doi.org/10.1109/JPROC.2017.2729890]
Li K, Wang J L and Yao J Y. 2021. Effectiveness of machine learning methods for water segmentation with ROI as the label: a case study of the Tuul River in Mongolia. International Journal of Applied Earth Observation and Geoinformation, 103: 102497 [DOI: 10.1016/j.jag.2021.102497http://dx.doi.org/10.1016/j.jag.2021.102497]
Li M, Zang S Y, Zhang B, Li S S and Wu C S. 2014. A review of remote sensing image classification techniques: the role of spatio-contextual information. European Journal of Remote Sensing, 47(1): 389-411 [DOI: 10.5721/EuJRS20144723http://dx.doi.org/10.5721/EuJRS20144723]
Li X, Zheng D H, Feng M and Chen F H. 2022. Information geography: the information revolution reshapes geography. Science China Earth Sciences, 65(2): 379-382
李新, 郑东海, 冯敏, 陈发虎. 2022. 信息地理学: 信息革命重塑地理学. 中国科学: 地球科学, 52(2): 370-373 [DOI: 10.1360/SSTe-2021-0184http://dx.doi.org/10.1360/SSTe-2021-0184]
Maron M E. 1961. Automatic indexing: an experimental inquiry. Journal of the ACM, 8(3): 404-417 [DOI: 10.1145/321075.321084http://dx.doi.org/10.1145/321075.321084]
McCulloch W S and Pitts W. 1990. A logical calculus of the ideas immanent in nervous activity. 1943. Bulletin of Mathematical Biology, 52(1/2): 99-115
Mitchell T M. 1997. Machine Learning. New York: McGraw-Hill, Inc.
Novikoff A B. 1962. Cytochemical staining methods for enzyme activities: their application to the rat parotid gland. The Jewish Memorial Hospital bulletin, 6-7: 70-93
Quinlan J R. 1986. Induction of decision trees. Machine Learning, 1(1): 81-106 [DOI: 10.1007/BF00116251http://dx.doi.org/10.1007/BF00116251]
Quinlan J R. 1993. C4.5: Programs for Machine Learning. San Francisco: Morgan Kaufmann Publishers, Inc.
Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J, Carvalhais N and Prabhat. 2019. Deep learning and process understanding for data-driven Earth system science. Nature, 566(7743): 195-204 [DOI: 10.1038/s41586-019-0912-1http://dx.doi.org/10.1038/s41586-019-0912-1]
Ren W and Ge Y. 2011. Progress on sub-pixel mapping methods for remotely sensed images. Remote Sensing Technology and Application, 26(1): 33-44
任武, 葛咏. 2011. 遥感影像亚像元制图方法研究进展综述. 遥感技术与应用, 26(1): 33-44 [DOI: 10.11873/j.issn.1004-0323.2011.1.33http://dx.doi.org/10.11873/j.issn.1004-0323.2011.1.33]
Rosenblatt F. 1958. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65(6): 386-408 [DOI: 10.1037/h0042519http://dx.doi.org/10.1037/h0042519]
Rumelhart D E, Hinton G E and Williams R J. 1988. Learning internal representations by error propagation//Collins A and Smith E E, eds. Readings in Cognitive Science. San Mateo: Morgan Kaufmann, 399-421 [DOI: 10.1016/B978-1-4832-1446-7.50035-2http://dx.doi.org/10.1016/B978-1-4832-1446-7.50035-2]
Salcedo-Sanz S, Ghamisi P, Piles M, Werner M, Cuadra L, Moreno-Martínez A, Izquierdo-Verdiguier E, Muñoz-Marí J, Mosavi A and Camps-Valls G. 2020. Machine learning information fusion in earth observation: a comprehensive review of methods, applications and data sources. Information Fusion, 63: 256-272 [DOI: 0.1016/j.inffus.2020.07.004http://dx.doi.org/0.1016/j.inffus.2020.07.004]
Schapire R E. 1990. The strength of weak learnability. Machine Learning, 5(2): 197-227 [DOI: 10.1007/BF00116037http://dx.doi.org/10.1007/BF00116037]
Shapiro J M. 2006. Smart cities: quality of life, productivity, and the growth effects of human capital. The Review of Economics and Statistics, 88(2): 324-335 [DOI: 10.1162/rest.88.2.324http://dx.doi.org/10.1162/rest.88.2.324]
Socher R, Huval B, Manning C D and Ng A Y. 2012. Semantic compositionality through recursive matrix-vector spaces//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Jeju Island: Association for Computational Linguistics: 1201-1211
Socher R, Pennington J, Huang E H, Ng A Y and Manning C D. 2011. Semi-supervised recursive autoencoders for predicting sentiment distributions//Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Edinburgh: Association for Computational Linguistics: 151-161
Socher R, Perelygin A, Wu J, Chuang J, Manning C D, Ng A and Potts C. 2013. Recursive deep models for semantic compositionality over a sentiment treebank//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Seattle: Association for Computational Linguistics: 1631-1642
Song Q. 2016. Object-based Image Analysis with Machine Learning Algorithms for Cropping Pattern Mapping Using GF-1/WFV Imagery. Beijing: Chinese Academy of Agricultural Sciences: 92
宋茜. 2016. 基于GF-1/WFV和面向对象的农作物种植结构提取方法研究. 北京: 中国农业科学院: 92
Tai K S, Socher R and Manning C D. 2015. Improved semantic representations from tree-structured long short-term memory networks//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Beijing: Association for Computational Linguistics: 1556-1566 [DOI: 10.3115/v1/P15-1150http://dx.doi.org/10.3115/v1/P15-1150]
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser L and Polosukhin I. 2017. Attention is all you need. arXiv: 1706.03762 [DOI: 10.48550/arXiv.1706.03762http://dx.doi.org/10.48550/arXiv.1706.03762]
Walter V. 2004. Object-based classification of remote sensing data for change detection. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3/4): 225-238 [DOI: 10.1016/j.isprsjprs.2003.09.007http://dx.doi.org/10.1016/j.isprsjprs.2003.09.007]
Wang F. 1990. Fuzzy supervised classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 28(2): 194-201 [DOI: 10.1109/36.46698http://dx.doi.org/10.1109/36.46698]
Wang J L, Zhang M, Han X H, Wang X J and Zheng L. 2020. Spatio-temporal evolution and regional differences of the public opinion on the prevention and control of COVID-19 epidemic in China. Acta Geographica Sinica, 75(11): 2490-2504
王卷乐, 张敏, 韩雪华, 王晓洁, 郑莉. 2020. COVID-19疫情防控中的中国公众舆情时空演变特征. 地理学报, 75(11): 2490-2504 [DOI: 10.11821/dlxb202011016http://dx.doi.org/10.11821/dlxb202011016]
Xu J, Ding Y X and Wang X L. 2007. Sentiment classification for Chinese news using machine learning methods. Journal of Chinese Information Processing, 21(6): 95-100
徐军, 丁宇新, 王晓龙. 2007. 使用机器学习方法进行新闻的情感自动分类. 中文信息学报, 21(6): 95-100 [DOI: 10.3969/j.issn.1003-0077.2007.06.013http://dx.doi.org/10.3969/j.issn.1003-0077.2007.06.013]
Xu J B, Song J, Li B C, Liu D and Cao X S. 2021. Combining night time lights in prediction of poverty incidence at the county level. Applied Geography, 135: 102552 [DOI: 10.1016/j.apgeog.2021.102552http://dx.doi.org/10.1016/j.apgeog.2021.102552]
Yang Z C, Yang D Y, Dyer C, He X D, Smola A and Hovy E. 2016. Hierarchical attention networks for document classification//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego: Association for Computational Linguistics: 1480-1489 [DOI: 10.18653/v1/N16-1174http://dx.doi.org/10.18653/v1/N16-1174]
Yu F H, Zhao D, Guo Z F, Jin Z Y, Guo S, Chen C L and Xu T Y. 2022. Characteristic analysis and decomposition of mixed pixels from UAV hyperspectral images in rice tillering stage. Spectroscopy and Spectral Analysis, 42(3): 947-953
于丰华, 赵丹, 郭忠辉, 金忠煜, 郭爽, 陈春玲, 许童羽. 2022. 水稻分蘖期无人机高光谱影像混合像元特征分析与分解. 光谱学与光谱分析, 42(3): 947-953 [DOI: 10.3964/j.issn.1000-0593(2022)03-0947-07http://dx.doi.org/10.3964/j.issn.1000-0593(2022)03-0947-07]
Yu Q, Gong P, Clinton N, Biging G, Kelly M and Schirokauer D. 2006. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogrammetric Engineering and Remote Sensing, 72(7): 799-811 [DOI: 10.14358/PERS.72.7.799http://dx.doi.org/10.14358/PERS.72.7.799]
Yu Z Y, Yuan L W, Wu M G, Zhou L C, Luo W, Zhang X Y and Lv G N. 2022. Classification and description of geographic information from the perspective of geography. Journal of Geo-information Science, 24(1): 17-24
俞肇元, 袁林旺, 吴明光, 周良辰, 罗文, 张雪英, 闾国年. 2022. 地理学视角下地理信息的分类与描述. 地球信息科学学报, 24(1): 17-24 [DOI: 10.12082/dqxxkx.2022.210817http://dx.doi.org/10.12082/dqxxkx.2022.210817]
Zhang G X, Cao Z X and Gu Y J. 2005. A hybrid classifier based on rough set theory and support vector machines//Second International Conference on Fuzzy Systems and Knowledge Discovery. Changsha: Springer: 1287-1296 [DOI: 10.1007/11539506_162http://dx.doi.org/10.1007/11539506_162]
Zhao D P, Gu H Y and Jia Y. 2016. Comparison of machine learning method in object-based image classification. Science of Surveying and Mapping, 41(10): 181-186
赵丹平, 顾海燕, 贾莹. 2016. 机器学习法在面向对象影像分类中的对比分析. 测绘科学, 41(10): 181-186 [DOI: 10.16251/j.cnki.1009-2307.2016.10.036http://dx.doi.org/10.16251/j.cnki.1009-2307.2016.10.036]
Zheng Z H, Wu W B, Chen X, Hu R X, Liu X and Wang P. 2018. A traffic sensing and analyzing system using social media data. Acta Automatica Sinica, 44(4): 656-666
郑治豪, 吴文兵, 陈鑫, 胡荣鑫, 柳鑫, 王璞. 2018. 基于社交媒体大数据的交通感知分析系统. 自动化学报, 44(4): 656-666 [DOI: 10.16383/j.aas.2017.c160537http://dx.doi.org/10.16383/j.aas.2017.c160537]
Zhu Q Q, Guo X, Deng W H, Shi S N, Guan Q F, Zhong Y F, Zhang L P and Li D R. 2022b. Land-Use/Land-Cover change detection based on a Siamese global learning framework for high spatial resolution remote sensing imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 184: 63-78 [DOI: 10.1016/j.isprsjprs.2021.12.005http://dx.doi.org/10.1016/j.isprsjprs.2021.12.005]
Zhu Q Q, Lei Y, Sun X L, Guan Q F, Zhong Y F, Zhang L P and Li D R. 2022a. Knowledge-guided land pattern depiction for urban land use mapping: a case study of Chinese cities. Remote Sensing of Environment, 272: 112916 [DOI: 10.1016/j.rse.2022.112916http://dx.doi.org/10.1016/j.rse.2022.112916]
Zhu Q Q, Zhang Y N, Wang L Z, Zhong Y F, Guan Q F, Lu X Y, Zhang L P and Li D R. 2021. A Global Context-aware and Batch-independent Network for road extraction from VHR satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 175: 353-365 [DOI: 10.1016/j.isprsjprs.2021.03.016http://dx.doi.org/10.1016/j.isprsjprs.2021.03.016]
相关作者
相关机构