高分一号卫星浑浊水体水质参数软分类反演
Estimation of water quality parameters of GF-1 WFV in turbid water based on soft classification
- 2023年27卷第3期 页码:769-779
纸质出版日期: 2023-03-07
DOI: 10.11834/jrs.20232442
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-03-07 ,
扫 描 看 全 文
张方方,李俊生,王超,王胜蕾.2023.高分一号卫星浑浊水体水质参数软分类反演.遥感学报,27(3): 769-779
Zhang F F,Li J S,Wang C and Wang S L. 2023. Estimation of water quality parameters of GF-1 WFV in turbid water based on soft classification. National Remote Sensing Bulletin, 27(3):769-779
高分一号卫星宽幅盖相机(GF-1 WFV)拥有高空间和高时间分辨率,在水环境遥感应用方面有较大潜力,现有研究以特定区域算法为主,缺少可用于大范围的水质参数反演算法。基于以上问题,本研究在全国开展了28次共计68个航次的水面测量与采样实验,获取了具有较好典型性和代表性的647个采样点数据用于水质参数反演建模和验证。为了满足光学特性复杂的浑浊水体大范围水质参数反演的需求,发展了基于软分类的GF-1 WFV水质参数反演算法。算法首先将水体分为4类,并计算各类型水体的质心光谱;然后为各类型水体优选和优化适用的叶绿素a浓度、总悬浮物浓度和透明度反演模型,并用距离权重进行加权融合获取最终的水质参数反演结果。经星地同步实验数据验证,水体叶绿素a浓度、总悬浮物浓度和透明度反演的相对误差分别为33.1%、28.6%和17.6%,且类别边界过渡平滑,避免了不同模型导致的数值跳变问题。结果表明,本算法具有大范围水质参数反演产品生产的能力。
The GF-1 wide-field-of-view cameras (GF-1 WFV) has high spatial and temporal resolution
and has great potential in the application of water environment remote sensing. Existing studies mainly focus on region-specific algorithms
and lack of water-quality parameter estimation algorithms that can be used in a large range. Based on the above problems
this study carried out 28 water surface measurement and sampling experiments with 68 voyages in China
and obtained 647 typical and representative sampling point data for water quality parameter estimation modeling and validation. The study area included Taihu Lake
Chaohu Lake
Dianchi Lake
Three Gorges Reservoir
Guanting Reservoir
Yuqiao Reservoir
Shandong Pingyin Small Water Body
Shaanxi Yulin Small Water Body
Ningxia Ningdong Base Small Water Body. The GF-1 WFV images were used the relative atmospheric correction algorithm based on Sentinel2-MSI data of uniform invariant ground object spectral database to obtain the water remote sensing reflectance data. In order to meet the needs of large-scale estimation of water quality parameters in turbid water with complex optical characteristics
a GF-1 WFV water quality parameter estimation algorithm based on soft classification was developed. Firstly
the algorithm divided the water into four types (OWTs) by a stepwise iterative K-mean clustering method and calculated the centroid spectra of each type of water by the average of all spectra of this category
among them
OWT1 was jointly dominated by phytoplankton and non-algae particles
OWT2 was dominated by non-algae particles
OWT3 was dominated by phytoplankton
OWT4 was bloom (no water quality inversion in this water type); Then
the Spectral Angular distance (SAD) was used to calculate the distance from each pixel to each type of centroid spectra and the SAD was converted into distance weight
and the suitable estimation models of chlorophyll a concentration
total suspended solids concentration and transparency were selected and optimized for each type of water body
and the final estimation results of water quality parameters were obtained by weighted fusion with distance weight. In this paper
several band ratio and difference models were investigated. Chlorophyll a used the blue green ratio model in OWT1
the red green ratio model in OWT2
and the red near-infrared ratio model in OWT3. The total suspended concentration was applicable to the red green ratio model in OWT1
the green near-infrared ratio model in OWT2
and the red near-infrared ratio model in OWT3. The transparency models of the three types of water bodies all used the green band and match the blue and red band to constructed ratio model. The mean relative errors of chlorophyll a concentration
total suspended solids concentration and transparency estimation were 33.1%
28.6% and 17.6% verified by satellite earth synchronization experiment data
and the transition of category boundary was smooth
which avoiding the numerical jump caused by different models. The results showed that this algorithm had the ability to generate water quality parameter production of wide range area. Due to the limitation of the GF-1 WFV sensor band setting (only four broad bands from visible light to near-infrared)
the quantification processing and models have great limitations
and the applicability and scalability of the model need to be further improved.
GF-1 WFV水体类型叶绿素a总悬浮物透明度
GF-1 WFVwater types (OWTs)chlorophyll atotal suspended solidstransparency
Bao Y, Tian Q J and Chen M. 2015. A weighted algorithm based on normalized mutual information for estimating the chlorophyll-a concentration in inland waters using geostationary ocean color imager (GOCI) data. Remote Sensing, 7(9): 11731-11752. [DOI: 10.3390/rs70911731http://dx.doi.org/10.3390/rs70911731]
Canty M, Nielsen A A and Schmidt M. 2004. Automatic radiometric normalization of multitemporal satellite imagery. Remote Sensing of Environment, 91(3-4): 441-451. [DOI: 10.1016/j.rse.2003.10.024http://dx.doi.org/10.1016/j.rse.2003.10.024]
Cao C. 2021. Water Quality Monitoring of Typical Reservoirs in Beijing Tianjin Hebei Region Based on GF1 Satellite Remote Sensing Data. Beijing: China University of Geosciences (Beijing)
曹畅. 2021. 基于高分一号卫星的京津冀典型水库水色指数和透明度监测研究. 北京: 中国地质大学(北京) [DOI: 10.27493/d.cnki.gzdzy.2021.001658http://dx.doi.org/10.27493/d.cnki.gzdzy.2021.001658]
Cao Y, Ye Y T, Zhao H L, Jiang Y Z and Wang H. 2019. Remote sensing of total suspended matter concentration and turbidity in a macrophytic lake. Journal of Remote Sensing, 23(6): 1253-1268.
曹引, 冶运涛, 赵红莉, 蒋云钟, 王浩. 2019. 草型湖泊总悬浮物浓度和浊度遥感监测. 遥感学报, 23(6): 1253-1268 [DOI: 10.11834/jrs.20198144http://dx.doi.org/10.11834/jrs.20198144]
Cheng C M, Li Y, Ding Y, Tu Q G and Qin P. 2019. Remote sensing estimation of chlorophyll-a and total suspended matter concentration in qiantang river based on GF-1/WFV data. Journal of Yangtze River Scientific Research Institute, 36(1): 21-28
程春梅, 李渊, 丁奕, 涂乾光, 秦鹏. 2019. 基于GF-1/WFV的钱塘江叶绿素a和总悬浮物浓度遥感估算. 长江科学院院报, 36(1): 21-28 [DOI: 10.11988/ckyyb.20170701http://dx.doi.org/10.11988/ckyyb.20170701]
Cheng Q, Liu B, Li T and Zhu L. 2015. Research on remote sensing retrieval of suspended sediment concentration in Hangzhou Bay by GF-1 satellite. Marine Environmental Science, 34(4): 558-563, 577.
程乾, 刘波, 李婷, 朱利. 2015. 基于高分1号杭州湾河口悬浮泥沙浓度遥感反演模型构建及应用. 海洋环境科学, 34(4): 558-563, 577 [DOI: 10.13634/j.cnki.mes.2015.04.015http://dx.doi.org/10.13634/j.cnki.mes.2015.04.015]
Dou X G. 2022. Time Series Calibration Research and Verification of GF1 Satellite. Changchun: Jilin University
豆新格. 2022. 高分一号卫星时间序列定标研究与验证. 长春: 吉林大学 [DOI: 10.27162/d.cnki.gjlin.2022.005324http://dx.doi.org/10.27162/d.cnki.gjlin.2022.005324]
Du Y, Teillet P M and Cihlar J. 2002. Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection. Remote Sensing of Environment, 82(1): 123-134. [DOI: 10.1016/S0034-4257(02)00029-9http://dx.doi.org/10.1016/S0034-4257(02)00029-9]
Eleveld M A, Ruescas A B, Hommersom A, Moore T S, Peters S W M and Brockmann C. 2017. An optical classification tool for global lake waters. Remote Sensing, 9(5): 420. [DOI: 10.3390/rs9050420http://dx.doi.org/10.3390/rs9050420]
Gao C, Xu J, Gao D, Wang L L and Wang Y Q. 2019. Retrieval of concentration of total suspended matter from GF-1 satellite and field measured spectral data during flood period in Poyang Lake. Remote Sensing for Land and Resources, 31(1): 101-109
高晨, 徐健, 高丹, 王莉莉, 王野乔. 2019. 基于GF-1与实测光谱数据鄱阳湖丰水期总悬浮物浓度反演. 国土资源遥感, 31(1): 101-109 [DOI: 10.6046/gtzyyg.2019.01.14http://dx.doi.org/10.6046/gtzyyg.2019.01.14]
Guo L F, Gao X H, Kang J and Meng X Q. 2009. Application of the pseudo-invariant feature in normalization process of the remote sensing images. Remote Sensing Technology and Application, 24(5): 588-595
郭丽峰, 高小红, 亢健, 孟小前. 2009. 伪不变特征法在遥感影像归一化处理中的应用. 遥感技术与应用, 24(5): 588-595
Hang X, Cao Y, Hang R R, Xu M, Huo Y, Sun L X and Zhu S H. 2021. Estimation model of chlorophyll-a concentration in Taihu Lake based on random forest algorithm and gaofen observations. Meteorological Monthly, 47(12): 1525-1536
杭鑫, 曹云, 杭蓉蓉, 徐萌, 霍焱, 孙良宵, 朱士华. 2021. 基于随机森林算法与高分观测的太湖叶绿素a浓度估算模型. 气象, 47(12): 1525-1536 [DOI: 10.7519/j.issn.1000-0526.2021.12.008http://dx.doi.org/10.7519/j.issn.1000-0526.2021.12.008]
Hang X, Li Y C, Li X Y, Xu M and Sun L X. 2022. Estimation of chlorophyll-a concentration in Lake Taihu from Gaofen-1 wide-field-of-view data through a machine learning trained algorithm. Journal of Meteorological Research, 36(1): 208-226. [DOI: 10.1007/s13351-022-1146-yhttp://dx.doi.org/10.1007/s13351-022-1146-y]
Huang C. 2017. Inversion of Water SSC and Decision Tree Analysis of Poyang Lake Based on GF-1 Image. Nanchang: East China University of Technology
黄聪. 2017. 基于高分一号卫星影像的鄱阳湖水体悬浮泥沙浓度反演与决策树分析. 南昌: 东华理工大学
Jackson T, Sathyendranath S and Mélin F. 2017. An improved optical classification scheme for the ocean colour essential climate variable and its applications. Remote Sensing of Environment, 203: 152-161. [DOI: 10.1016/j.rse.2017.03.036http://dx.doi.org/10.1016/j.rse.2017.03.036]
Jiang Q. 2020. Study on the Effectiveness Evaluation Method of Satellite Remote Sensing in the Monitoring of Lake and Reservoir Water Quality——Take GF-1 Satellite as An Example. Lanzhou: Lanzhou Jiaotong University
姜倩. 2020. 卫星遥感在湖库水质监测中的有效性评价方法研究——以GF-1号卫星为例. 兰州: 兰州交通大学 [DOI: 10.27205/d.cnki.gltec.2020.000038http://dx.doi.org/10.27205/d.cnki.gltec.2020.000038]
Le C F, Li Y M, Zha Y, Sun D Y, Huang C C and Zhang H. 2011. Remote estimation of chlorophyll a in optically complex waters based on optical classification. Remote Sensing of Environment, 115(2): 725-737. [DOI: 10.1016/j.rse.2010.10.014http://dx.doi.org/10.1016/j.rse.2010.10.014]
Li Y M, Zhao H, Bi S and Lyu H. 2022. Research progress of remote sensing monitoring of case II water environmental parameters based on water optical classification. Journal of National Remote Sensing, 26(1): 19-31
李云梅, 赵焕, 毕顺, 吕恒. 2022. 基于水体光学分类的二类水体水环境参数遥感监测进展. 遥感学报, 26(1): 19-31 [DOI: 10.11834/jrs.20221212http://dx.doi.org/10.11834/jrs.20221212]
Liang W X, Li J S, Zhou D M, Shen Q and Zhang F F. 2015. Evaluation of GF-1 WFV characteristics in monitoring inland water environment. Remote Sensing Technology and Application, 30(4): 810-818
梁文秀, 李俊生, 周德民, 申茜, 张方方. 2015. 面向内陆水环境监测的GF-1卫星WFV数据特征评价. 遥感技术与应用, 30(4): 810-818 [DOI: 10.11873/j.issn.1004-0323.2015.4.0810http://dx.doi.org/10.11873/j.issn.1004-0323.2015.4.0810]
Liu D Z, Li Z, Chen Z H and Chen Y C. 2020. Influence of Hong Kong-Zhuhai-Macao Bridge on the distribution of suspended sediment in the Pearl River estuary. Journal of Guangdong Ocean University, 40(6): 89-95
刘大召, 李卓, 陈仔豪, 程永存. 2020. 基于高分1号遥感数据港珠澳大桥对珠江口海域悬浮泥沙分布的影响. 广东海洋大学学报, 40(6): 89-95 [DOI: 10.3969/j.issn.1673-9159.2020.06.011http://dx.doi.org/10.3969/j.issn.1673-9159.2020.06.011]
Liu J, Sun D Y, Zhang Y L and Li Y M. 2013. Pre-classification improves relationships between water clarity, light attenuation, and suspended particulates in turbid inland waters. Hydrobiologia, 711(1): 71-86. [DOI: 10.1007/s10750-013-1462-4http://dx.doi.org/10.1007/s10750-013-1462-4]
Liu Q H, Wen J G, Zhou X, Zhao J, Li Z Y, Li X, Ma M G, Wang W Z, Liao X H, Liu S M, Fan W J, Xiao Q, Zhong B, Li J, Xin X Z, Li L, Jia L, Gao Z H, Jin J D, Liang S, Xin J, Liao C J and Wu Y R. 2023. Technique system of remote sensing product generation and validation of GF common products. National Remote Sensing Bulletin, 27(3): 544-562
柳钦火, 闻建光, 周翔, 赵坚, 李增元,李新, 马明国, 王维真, 廖小罕, 刘绍民, 范闻捷, 肖青, 仲波, 李静, 辛晓洲, 李丽, 贾立, 高志海, 金家栋, 梁师, 邢进, 廖楚江, 吴一戎. 2023. 高分遥感共性产品生成和真实性检验技术体系. 遥感学报, 27(3): 544-562 [DOI: 10.11834/jrs.20235022http://dx.doi.org/10.11834/jrs.20235022]
Liu Y, Fan J P and Jiang H. 2021. Evaluation of parametric and nonparametric algorithms for the estimation of suspended particulate matter in turbid water using gaofen-1 wide field-of-view sensors. Journal of the Indian Society of Remote Sensing, 49(11): 2673-2687. [DOI: 10.1007/S12524-021-01405-7http://dx.doi.org/10.1007/S12524-021-01405-7]
Moore T S, Campbell J W and Dowell M D. 2009. A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product. Remote Sensing of Environment, 113(11): 2424-2430. [DOI: 10.1016/j.rse.2009.07.016http://dx.doi.org/10.1016/j.rse.2009.07.016]
Moore T S, Campbell J W and Feng H. 2001. A fuzzy logic classification scheme for selecting and blending satellite ocean color algorithms. IEEE Transactions on Geoscience and Remote Sensing, 39(8): 1764-1776. [DOI: 10.1109/36.942555http://dx.doi.org/10.1109/36.942555]
Moore T S, Dowell M D, Bradt S and Verdu A R. 2014. An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters. Remote Sensing of Environment, 143: 97-111. [DOI: 10.1016/j.rse.2013.11.021http://dx.doi.org/10.1016/j.rse.2013.11.021]
Pu L W. 2019. Remote Sensing Inversion of Chlorophyll-a Concentration in the Eastern Coastal Zone of Taihu Lake Based on High Resolution Image. Suzhou: Suzhou University of Science and Technology (浦玲伟. 2019. 基于高分影像的太湖东岸带叶绿素a浓度遥感反演研究. 苏州: 苏州科技大学)
Ruffin C, King R L and Younan N H. 2008. A combined derivative spectroscopy and savitzky-golay filtering method for the analysis of hyperspectral data. GIScience and Remote Sensing, 45(1): 1-15. [DOI: 10.2747/1548-1603.45.1.1http://dx.doi.org/10.2747/1548-1603.45.1.1]
Shang P and Shen F. 2016. Atmospheric correction of satellite gf-1/wfv imagery and quantitative estimation of suspended particulate matter in the yangtze estuary. Sensors, 16(12): 1997. [DOI: 10.3390/s16121997http://dx.doi.org/10.3390/s16121997]
Shen Q, Li J S, Zhang F F, Sun X, Li J, Li W and Zhang B. 2015. Classification of several optically complex waters in China using in situ remote sensing reflectance. Remote Sensing, 7(11): 14731-14756. [DOI: 10.3390/rs71114731http://dx.doi.org/10.3390/rs71114731]
Tian L Q, Wai O W H, Chen X L, Li W B, Li J, Li W K and Zhang H D. 2016. Retrieval of total suspended matter concentration from gaofen-1 wide field imager (WFI) multispectral imagery with the assistance of terra modis in turbid water-case in deep bay. International Journal of Remote Sensing, 2016, 37(14): 3400-3413. [DOI: 10.1080/01431161.2016.1199084http://dx.doi.org/10.1080/01431161.2016.1199084]
Tu M and Zhang L L. 2021. Inversion analysis of lake chlorophyll a concentration based on high resolution remote sensing technology. Technical Supervision in Water Resources, (10): 126-132
涂明, 章李乐. 2021. 基于高分遥感技术的湖泊叶绿素a浓度反演分析. 水利技术监督, (10): 126-132 [DOI: 10.3969/j.issn.1008-1305.2021.10.032http://dx.doi.org/10.3969/j.issn.1008-1305.2021.10.032]
Xie X. 2018. Estimation and Analysis of Total Suspended Matter by Remote Sensing in the Lower Reaches of Minjiang. Fuzhou: Fuzhou University
谢旭. 2018. 闽江下游悬浮物浓度遥感反演与分析. 福州: 福州大学
Xu P F, Mao F, Jin P B and Cheng Q. 2020. Spatial-temporal variations of chlorophyll-a in Qiandao lake using GF1_WFV data. China Environmental Science, 40(10): 4580-4588
徐鹏飞, 毛峰, 金平斌, 程乾. 2020. 基于GF1_WFV的千岛湖水体叶绿素a浓度时空变化. 中国环境科学, 40(10): 4580-4588 [DOI: 10.3969/j.issn.1000-6923.2020.10.045http://dx.doi.org/10.3969/j.issn.1000-6923.2020.10.045]
Yao R, Cai L N, Liu J Q and Zhou M R. 2020. GF-1 satellite observations of suspended sediment injection of Yellow River Estuary, China. Remote Sensing, 12(19): 3126. [DOI: 10.3390/rs12193126http://dx.doi.org/10.3390/rs12193126]
Yuan D and Elvidge C D. 1996. Comparison of relative radiometric normalization techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 51(3): 117-126. [DOI: 10.1016/0924-2716(96)00018-4http://dx.doi.org/10.1016/0924-2716(96)00018-4]
Zhai Z K, Lu S L, Bao Z, Ma J, Wang P and Dai Y. 2018. Water quality monitoring with GF1-WFV imagery in Panjiakou reservoir, Hebei province of China. Journal of China Institute of Water Resources and Hydropower Research, 16(4): 297-306
翟召坤, 卢善龙, 暴柱, 马津, 王萍, 戴乙. 2018. 基于GF-1卫星WFV数据的潘家口水库水质参数遥感估算模型研究. 中国水利水电科学研究院学报, 16(4): 297-306 [DOI: 10.13244/j.cnki.jiwhr.2018.04.008http://dx.doi.org/10.13244/j.cnki.jiwhr.2018.04.008]
Zhang F F. 2014. Soft Classification Based Remote Sensing Estimation of Chlorophyll-a Concentration and Long Time Series Analysis in Taihu Lake, China. Shanghai: East China Normal University
张方方. 2014. 基于软分类的太湖水体叶绿素a浓度遥感反演与长时间序列分析. 上海: 华东师范大学
Zhang F F, Li J S, Shen Q, Zhang B, Tian L Q, Ye H P, Wang S L and Lu Z Y. 2019. A soft-classification-based chlorophyll-a estimation method using MERIS data in the highly turbid and eutrophic Taihu Lake. International Journal of Applied Earth Observation and Geoinformation, 74: 138-149. [DOI: 10.1016/j.jag.2018.07.018http://dx.doi.org/10.1016/j.jag.2018.07.018]
Zhang F F, Li J S, Shen Q, Zhang B, Wu C Q, Wu Y F, Wang G L, Wang S L and Lu Z Y. 2015. Algorithms and schemes for chlorophyll a estimation by remote sensing and optical classification for turbid Lake Taihu, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(1): 350-364. [DOI: 10.1109/JSTARS.2014.2333540http://dx.doi.org/10.1109/JSTARS.2014.2333540]
Zhang F F,Li J S,Wang C,Wang S L,Wang Z and Zhang B. 2023. Multitype inland water atmospheric correction and water quality estimation based on HY-1C CZI images. National Remote Sensing Bulletin,27(1):79-91
张方方,李俊生,王超,王胜蕾,王正,张兵.2023.基于HY-1C卫星CZI影像的多类型内陆水体大气校正及水质参数反演.遥感学报,27(1):79-91 [DOI:1011834/jrs.20235010http://dx.doi.org/1011834/jrs.20235010]
Zhang M C and Guo B Y. 2018. Retrieval of suspended sediment concentration in Zhoushan coastal area satellite based on GF-1. Ocean Development and Management, 35(1): 126-131
章敏超, 郭碧云. 2018. 基于GF-1号的舟山近岸悬浮泥沙浓度反演研究. 海洋开发与管理, 35(1): 126-131 [DOI: 10.3969/j.issn.1005-9857.2018.01.022http://dx.doi.org/10.3969/j.issn.1005-9857.2018.01.022]
Zhang T T, Hu H, Ma X S and Zhang Y B. 2020. Long-term spatiotemporal variation and environmental driving forces analyses of algal blooms in Taihu Lake based on multi-source satellite and land observations. Water, 12(4): 1035. [DOI: 10.3390/w12041035http://dx.doi.org/10.3390/w12041035]
Zhao S H, Wang Q, Yang Y P, Zhu L, Wang Z T and Jiang D. 2015. Application and demonstration study of gaofen-1 satellite environmental remote sensing monitoring. Satellite Application, (3): 37-40
赵少华, 王桥, 杨一鹏, 朱利, 王中挺, 江东. 2015. 高分一号卫星环境遥感监测应用示范研究. 卫星应用, (3): 37-40
Zhou T, Liu X N, Qi W Y, Xia P and Cao N. 2020. Temporal and spatial evolution characteristics of cyanobacteria in Chaohu Lake based on GF1 satellite imagery. Journal of North China University of Water Resources and Electric Power, 41(3): 62-66
周婷, 刘小妮, 戚王月, 夏萍, 曹娜. 2020. 基于GF1卫星影像的巢湖蓝藻时空演变特征分析. 华北水利水电大学学报(自然科学版), 41(3): 62-66 [DOI: 10.19760/j.ncwu.zk.2020036http://dx.doi.org/10.19760/j.ncwu.zk.2020036]
Zhu L, Li Y M, Zhao S H and Guo Y L. 2015. Remote sensing monitoring of Taihu Lake water quality by using GF-1 satellite WFV data. Remote Sensing for Land and Resources, 27(1): 113-120
朱利, 李云梅, 赵少华, 郭宇龙. 2015. 基于GF-1号卫星WFV数据的太湖水质遥感监测. 国土资源遥感, 27(1): 113-120 [DOI: 10.6046/gtzyyg.2015.01.18http://dx.doi.org/10.6046/gtzyyg.2015.01.18]
Zhu Y F, Zhu L, Li J G, Chen Y J, Zhang Y H, Hou H Q, Ju X and Zhang Y Z. 2017. The study of inversion of chlorophyll a in Taihu based on GF-1 WFV image and BP neural network. Acta Scientiae Circumstantiae, 37(1): 130-137
朱云芳, 朱利, 李家国, 陈宜金, 张永红, 侯海倩, 鞠星, 张雅洲. 2017. 基于GF-1 WFV影像和BP神经网络的太湖叶绿素a反演. 环境科学学报, 37(1): 130-137 [DOI: 10.13671/j.hjkxxb.2016.0275http://dx.doi.org/10.13671/j.hjkxxb.2016.0275]
相关作者
相关机构