融合高分一号、风云四号及葵花-8的光合有效辐射遥感方法及产品研究
A para metric model to estimate photosynthetically active radiation products from synergized GF-1, FY-4 and Himawari-8 data
- 2023年27卷第3期 页码:748-757
纸质出版日期: 2023-03-07
DOI: 10.11834/jrs.20232474
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-03-07 ,
扫 描 看 全 文
张海龙,李丽,辛晓洲,闻建光,王保清,唐勇,仲波,吴善龙,余珊珊,柳钦火.2023.融合高分一号、风云四号及葵花-8的光合有效辐射遥感方法及产品研究.遥感学报,27(3): 748-757
Zhang H L,Li L,Xin X Z,Wen J G,Wang B Q,Tang Y,Zhong B,Wu S L,Yu S S and Liu Q H. 2023. A para metric model to estimate photosynthetically active radiation products from synergized GF-1, FY-4 and Himawari-8 data. National Remote Sensing Bulletin, 27(3):748-757
光合有效辐射是植被生产力模型的重要输入参数,也是陆地生态系统模型及生物地化模型等的重要特征参量。目前的全球或区域尺度光合有效辐射产品在起伏地表情形的精度及可用性尚存在不足,高分系列卫星的发射,为高空间分辨率光合有效辐射遥感产品反演提供了可能。本文结合高分一号卫星(GF-1)反演的地表反照率产品,气溶胶光学厚度产品,日本新一代静止卫星Himawari-8及国产风云四号卫星(FY-4)的云光学厚度产品及美国的SNPP卫星反演的气溶胶光学厚度产品(用于填补GF气溶胶产品的空值区),发展了一种基于参数化模型的光合有效辐射遥感反演方法。晴空条件下,主要考虑气溶胶和瑞利散射对光合有效辐射的衰减;云天情形,则主要考虑云光学厚度参数对入射辐射的影响,以球形粒子的Mie散射理论和平面平行大气辐射传输原理计算总透过率;针对起伏地表,分别计算地形对坡面入射角度的影响、对直接辐射的遮蔽以及对散射辐射的增强/衰减效应,从而得到高分卫星光合有效辐射遥感反演模型及产品。利用河北怀来试验站、西南大学柑研所及黑河流域地表过程综合观测网的连续观测数据对光合有效辐射产品进行了对比验证,其相关系数为0.87,平均偏差为1.56 W/m
2
,均方根误差为16.14 W/m
2
。本算法所采用的云光学厚度输入数据的空间分辨率(5 km)及地表反照率分辨率(16 m)存在较大的空间尺度差异,可能会带来一定的误差。下一步拟利用GF-4卫星提供的50 m分辨率的大气参数,进一步提高GF光合有效辐射产品的时空精度,并针对产品开展更广泛深入的验证分析。
Photosynthetically Active Radiation (PAR) is an important input of vegetation productivity models
and also a key parameter of terrestrial ecosystem models and biogeochemical models. The accuracy and availability of current global or regional products are still insufficient to better understanding Earth system. China has launched series of Gaofen (GF) Earth observation satellites and provide the possibility of high spatial resolution PAR products retrieval. In this paper
a new method based on a parametric model for remote sensing inversion of PAR was proposed. The surface albedo products and the aerosol optical depth products were retrieved from GF-1 satellites
the cloud optical thickness products were retrieved from Himawari-8 and FY-4 satellites. Under clear sky conditions
the attenuation of PAR by aerosol and Rayleigh scattering is mainly considered. The influence of cloud on incident radiation is mainly considered for cloudy skies
and the calculation is based on the Mie scattering theory of spherical particles. Surface received direct PAR for rugged surfaces were calculated with the input of incident angle
the slope and the aspect. The enhancement or attenuation effect of the scattered radiation were retrieved using the sky view factor the horizontal surface received diffuse radiation. The PAR products were compared and verified using the continuous observation data of the ground stations collected from the Hebei Huailai
the Heihe River Basin Surface Process Comprehensive Observation Network and Ganyansuo in Chengdu. The correlation coefficient
mean bias error and the root mean square error between the two datasets were 0.87
1.56 W/m
2
and 16.14 W/m
2
respectively. The spatial resolution of the input atmospheric parameters (sub-satellite point 1 km) and the surface parameter resolution (16 m) of the PAR products have a large spatial scale difference. The atmospheric parameters with the resolution of 50 m provided by the GF-4 satellite will be used to further improve the spatiotemporal accuracy of GF PAR products
and more extensive and in-depth verification analysis will be carried out in our future study.
GF-1FY-4Himawari-8光合有效辐射参数化模型高分遥感共性产品
GF-1 satelliteFY-4Himawari-8PARparameterized modelquantitative remote sensing products
Alam S, Kaushik S C and Garg S N. 2009. Assessment of diffuse solar energy under general sky condition using artificial neural network. Applied Energy, 86(4): 554-564 [DOI: 10.1016/j.apenergy.2008.09.004http://dx.doi.org/10.1016/j.apenergy.2008.09.004]
Amrouche B and Le Pivert X. 2014. Artificial neural network based daily local forecasting for global solar radiation. Applied Energy, 130: 333-341 [DOI: 10.1016/j.apenergy.2014.05.055http://dx.doi.org/10.1016/j.apenergy.2014.05.055]
Chen L H, Zhang Y L and Song Y Y. 2021. Accuracy analysis of shortwave solar radiation products derived from FY-4A in the Heihe River Basin. Chinese Journal of Ecology, 40(1): 292-300
陈蔺鸿, 张彦丽, 宋雨钰. 2021. FY-4A太阳短波辐射产品在黑河流域的精度分析. 生态学杂志, 40(1): 292-300 [DOI: 10.13292/j.1000-4890.202101.021http://dx.doi.org/10.13292/j.1000-4890.202101.021]
Dozier J and Frew J. 1990. Rapid calculation of terrain parameters for radiation modeling from digital elevation data. IEEE Transactions on Geoscience and Remote Sensing, 28(5): 963-969 [DOI: 10.1109/36.58986http://dx.doi.org/10.1109/36.58986]
Foyo-Moreno I, Alados I and Alados-Arboledas L. 2018. A new empirical model to estimate hourly diffuse photosynthetic photon flux density. Atmospheric Research, 203: 189-196 [DOI: 10.1016/j.atmosres.2017.12.012http://dx.doi.org/10.1016/j.atmosres.2017.12.012]
Frouin R, Ramon D, Boss E, Jolivet D, Compiègne M, Tan J, Bouman H, Jackson T, Franz B, Platt T and Sathyendranath S. 2018. Satellite radiation products for ocean biology and biogeochemistry: needs, state-of-the-art, gaps, development priorities, and opportunities. Frontiers in Marine Science, 5: 3 [DOI: 10.3389/fmars.2018.00003http://dx.doi.org/10.3389/fmars.2018.00003]
Furlan C, De Oliveira A P, Soares J, Codato G and Escobedo J F. 2012. The role of clouds in improving the regression model for hourly values of diffuse solar radiation. Applied Energy, 92: 240-254 [DOI: 10.1016/j.apenergy.2011.10.032http://dx.doi.org/10.1016/j.apenergy.2011.10.032]
Gueymard C. 1989. A two-band model for the calculation of clear sky solar irradiance, illuminance, and photosynthetically active radiation at the earth's surface. Solar Energy, 43(5): 253-265 [DOI: 10.1016/0038-092X(89)90113-8http://dx.doi.org/10.1016/0038-092X(89)90113-8]
Gueymard C A. 2003. Direct solar transmittance and irradiance predictions with broadband models. Part I: detailed theoretical performance assessment. Solar Energy, 74(5): 355-379 [DOI: 10.1016/S0038-092X(03)00195-6http://dx.doi.org/10.1016/S0038-092X(03)00195-6]
Gueymard C A. 2008. REST2: high-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation-Validation with a benchmark dataset. Solar Energy, 82(3): 272-285 [DOI: 10.1016/j.solener.2007.04.008http://dx.doi.org/10.1016/j.solener.2007.04.008]
Ham S H, Kato S, Barker H W, Rose F G and Sun-Mack S. 2014. Effects of 3-D clouds on atmospheric transmission of solar radiation: cloud type dependencies inferred from A-train satellite data. Journal of Geophysical Research: Atmospheres, 119(2): 943-963 [DOI: 10.1002/2013JD020683http://dx.doi.org/10.1002/2013JD020683]
Hao D L, Asrar G R, Zeng Y L, Zhu Q, Wen J G, Xiao Q and Chen M. 2019. Estimating hourly land surface downward shortwave and photosynthetically active radiation from DSCOVR/EPIC observations. Remote Sensing of Environment, 232: 111320 [DOI: 10.1016/j.rse.2019.111320http://dx.doi.org/10.1016/j.rse.2019.111320]
Hou N, Zhang X T, Zhang W Y, Wei Y, Jia K, Yao Y J, Jiang B and Cheng J. 2020. Estimation of surface downward shortwave radiation over China from Himawari-8 AHI data based on random forest. Remote Sensing, 12(1): 181 [DOI: 10.3390/rs12010181http://dx.doi.org/10.3390/rs12010181]
Huang G H, Li Z Q, Li X, Liang S L, Yang K, Wang D D and Zhang Y. 2019. Estimating surface solar irradiance from satellites: past, present, and future perspectives. Remote Sensing of Environment, 233: 111371 [DOI: 10.1016/j.rse.2019.111371http://dx.doi.org/10.1016/j.rse.2019.111371]
Letu H, Yang K, Nakajima T Y, Ishimoto H, Nagao T M, Riedi J, Baran A J, Ma R, Wang T X, Shang H Z, Khatri P, Chen L F, Shi C X and Shi J C. 2020. High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite. Remote Sensing of Environment, 239: 111583 [DOI: 10.1016/j.rse.2019.111583http://dx.doi.org/10.1016/j.rse.2019.111583]
Linares-Rodriguez A, Ruiz-Arias J A, Pozo-Vazquez D, and Tovar-Pescador J. 2013. An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images. Energy, 61: 636–645. [DOI: 10.1016/j. energy.2013.09.008http://dx.doi.org/10.1016/j.energy.2013.09.008]
Liu Q H, Wen J G, Zhou X, Zhao J, Li Z Y, Li X, Ma M G, Wang W Z, Liao X H, Liu S M, Fan W J, Xiao Q, Zhong B, Li J, Xin X Z, Li L, Jia L, Gao Z H, Jin J D, Liang S, Xin J, Liao C J and Wu Y R. 2023. Technique system of remote sensing product generation and validation of GF common products. Journal of Remote Sensing, 27(3): 544-562
柳钦火, 闻建光, 周翔, 赵坚, 李增元, 李新, 马明国, 王维真, 廖小罕, 刘绍民, 范闻捷, 肖青, 仲波, 李静, 辛晓洲, 李丽, 贾立, 高志海, 金家栋, 梁师, 邢进, 廖楚江, 吴一戎. 2023. 高分遥感共性产品生成和真实性检验技术体系, 27(3): 544-562 [DOI:10.11834/jrs.20235022http://dx.doi.org/10.11834/jrs.20235022]
Liu S M, Li X, Xu Z W, Che T, Xiao Q, Ma M G, Liu Q H, Jin R, Guo J W, Wang L X, Wang W Z, Qi Y, Li H Y, Xu T R, Ran Y H, Hu X L, Shi S J, Zhu Z L, Tan J L, Zhang Y and Ren Z G. 2018. The Heihe integrated observatory network: a basin-scale land surface processes observatory in China. Vadose Zone Journal, 17(1): 1-21 [DOI: 10.2136/vzj2018.04.0072http://dx.doi.org/10.2136/vzj2018.04.0072]
Liu S M, Xu Z W, Wang W Z, Jia Z Z, Zhu M J, Bai J and Wang J M. 2011. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrology and Earth System Sciences, 15(4): 1291-1306 [DOI: 10.5194/hess-15-1291-2011http://dx.doi.org/10.5194/hess-15-1291-2011]
Liu Z L, Peng C H, Xiang W H, Tian D L, Deng X W and Zhao M F. 2010. Application of artificial neural networks in global climate change and ecological research: an overview. Chinese Science Bulletin, 55(34): 3853-3863 [DOI: 10.1007/s11434-010-4183-3http://dx.doi.org/10.1007/s11434-010-4183-3]
McCree K J. 1972. Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agricultural Meteorology, 10: 443-453 [DOI: 10.1016/0002-1571(72)90045-3http://dx.doi.org/10.1016/0002-1571(72)90045-3]
Qin J, Yang K, Liang S L and Tang W J. 2012. Estimation of daily mean photosynthetically active radiation under all-sky conditions based on relative sunshine data. Journal of Applied Meteorology and Climatology, 51(1): 150-160 [DOI: 10.1175/JAMC-D-10-05018.1http://dx.doi.org/10.1175/JAMC-D-10-05018.1]
Ryu Y, Jiang C Y, Kobayashi H and Detto M. 2018. MODIS-derived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5 km resolution from 2000. Remote Sensing of Environment, 204: 812-825 [DOI: 10.1016/j.rse.2017.09.021http://dx.doi.org/10.1016/j.rse.2017.09.021]
Shi H R, Li W W, Fan X H, Zhang J Q, Hu B, Husi L, Shang H Z, Han X L, Song Z J, Zhang Y J, Wang S, Chen H B and Xia X. 2018. First assessment of surface solar irradiance derived from Himawari-8 across China. Solar Energy, 174: 164-170 [DOI: 10.1016/j.solener.2018.09.015http://dx.doi.org/10.1016/j.solener.2018.09.015]
Stephens G L. 1978. Radiation profiles in extended water clouds. Ⅱ: parameterization schemes. Journal of the Atmospheric Sciences, 35(11): 2123-2132 [doi: 10.1175/1520-0469(1978)035<2123:RPIEWC>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1978)035<2123:RPIEWC>2.0.CO;2]
Stephens G L, Ackerman S and Smith E A. 1984. A shortwave parameterization revised to improve cloud absorption. Journal of the Atmospheric Sciences, 41(4): 687-690
Sun Y, Huang G H and Hao X H. 2011. A hybrid approach to estimate surface solar irradiance over Heihe River Basin by combining MODIS and MTSAT data. Remote Sensing Technology and Application, 26(6): 728-734
孙洋, 黄广辉, 郝晓华. 2011. 结合极轨卫星MODIS和静止气象卫星MTSAT估算黑河流域地表太阳辐射. 遥感技术与应用, 26(6): 728-734 [DOI: 10.11873/j.issn.1004-0323.2011.6.728http://dx.doi.org/10.11873/j.issn.1004-0323.2011.6.728]
Tang W J, Qin J, Yang K, Niu X L, Min M and Liang S L. 2017. An efficient algorithm for calculating photosynthetically active radiation with MODIS products. Remote Sensing of Environment, 194: 146-154 [DOI: 10.1016/j.rse.2017.03.028http://dx.doi.org/10.1016/j.rse.2017.03.028]
Tang W J, Yang K, Qin J, Li X and Niu X L. 2019. A 16-year dataset (2000—2015) of high-resolution (3 h, 10 km) global surface solar radiation. Earth System Science Data, 11: 1905—1915 [DOI: 10.5194/essd-11-1905-2019http://dx.doi.org/10.5194/essd-11-1905-2019]
Wang L C, Gong W, Feng L, Lin A W, Hu B, and Zhou M. 2015. Estimation of hourly and daily photosynthetically active radiation in Inner Mongolia, China, from 1990 to 2012. International Journal of Climatology, 35: 3120-3131. [DOI: 10.1002/joc.4197http://dx.doi.org/10.1002/joc.4197]
Wyser K, O’Hirok W and Gautier C. 2005. A simple method for removing 3-D radiative effects in satellite retrievals of surface irradiance. Remote Sensing of Environment, 94(3): 335-342 [DOI: 10.1016/j.rse.2004.10.003http://dx.doi.org/10.1016/j.rse.2004.10.003]
Yokoyama R, Shirasawa M and Pike R J. 2002. Visualizing topography by openness: a new application of image processing to digital elevation models. Photogrammetric Engineering and Remote Sensing, 68: 257-265
Zhang H L, Dong X Q, Xi B K, Xin X Z, Liu Q H, He H M, Xie X P, Li L and Yu S S. 2021. Retrieving high-resolution surface photosynthetically active radiation from the MODIS and GOES-16 ABI data. Remote Sensing of Environment, 260: 112436 [DOI: 10.1016/j.rse.2021.112436http://dx.doi.org/10.1016/j.rse.2021.112436]
Zhang H L, Liu G H, Yao L and Xie X P. 2010. Direct solar radiation simulation in all-weather and complex terrain conditions. Journal of Desert Research, 30(6): 1469-1476
张海龙, 刘高焕, 姚玲, 解修平. 2010. 复杂地形任意天气情形下太阳直接辐射量模拟. 中国沙漠, 30(6): 1469-1476
Zhang X T, Liang S L, Zhou G Q, Wu H R and Zhao X. 2014. Generating Global LAnd Surface Satellite incident shortwave radiation and photosynthetically active radiation products from multiple satellite data. Remote Sensing of Environment, 152: 318-332 [DOI: 10.1016/j.rse.2014.07.003http://dx.doi.org/10.1016/j.rse.2014.07.003]
Zheng T, Liang S L and Wang K C. 2008. Estimation of incident photosynthetically active radiation from GOES visible imagery. Journal of Applied Meteorology and Climatology, 47(3): 853-868 [DOI: 10.1175/2007JAMC1475.1http://dx.doi.org/10.1175/2007JAMC1475.1]
Zou L, Wang L C, Lin A W, Zhu H J, Peng Y L and Zhao Z Z. 2016. Estimation of global solar radiation using an artificial neural network based on an interpolation technique in southeast China. Journal of Atmospheric and Solar-Terrestrial Physics, 146: 110-122 [DOI: 10.1016/j.jastp.2016.05.013http://dx.doi.org/10.1016/j.jastp.2016.05.013]
相关作者
相关机构