2010年—2020年全球陆地区域大气CO2时空变化特征分析
Spatio-temporal characteristics of CO2 in global land area from 2010 to 2020 based on GOSAT satellite data
- 2023年27卷第8期 页码:1782-1791
纸质出版日期: 2023-08-07
DOI: 10.11834/jrs.20232508
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-08-07 ,
扫 描 看 全 文
姚依欣,李贵才,唐世浩,江飞.2023.2010年—2020年全球陆地区域大气CO2时空变化特征分析.遥感学报,27(8): 1782-1791
Yao Y X,Li G C,Tang S H and Jiang F. 2023. Spatio-temporal characteristics of CO2 in global land area from 2010 to 2020 based on GOSAT satellite data. National Remote Sensing Bulletin, 27(8):1782-1791
本文基于2010年—2020年GOSAT卫星二氧化碳柱总量产品,从全球空间分布、纬向分布、区域分布、年际与季相变化特征等方面,分析了大气CO
2
的时空变化特征。结果表明,2010年—2020年全球陆地区域大气CO
2
浓度持续上升,年均值从387.42 ppm上升至410.32 ppm,年均增长率约为2.33 ppm/a,其中2016年全球陆地区域平均大气CO
2
浓度首次超过400 ppm,年增长量超过3 ppm,为近10年最高。季相变化方面,北半球春季最高、夏末秋初最低,南半球波动相位相反,波动幅度北半球远高于南半球,且纬度越高波动越大。纬向分布特征明显,从南向北总体呈现先升高后降低,受到云及数据质量控制等因素影响,在赤道附近,存在较为明显的下降,峰值出现在0°—10°N和30°N—40°N。区域分布差异较大,多年均值的最大值出现在南美热带,最小值出现在北美北部,差异将近30 ppm;年均增长率方面亚洲温带最高,亚洲北部最低,分别为2.36 ppm/a和2.27 ppm/a。
Based on the total CO
2
column products of the GOSAT satellite from 2010 to 2020
this paper analyzes the spatio-temporal variation characteristics of atmospheric CO
2
concentration
including global spatial distribution
latitudinal distribution
regional distribution
interannual and seasonal variation characteristics. The comparison and verification results with TCCON ground-based observation data demonstrate that GOSAT XCO2 products have high observation accuracy and can be applied to large-scale analysis. The results show that the CO
2
concentration in the global land area continued to rise from 2010 to 2020
with an average annual value rising from 387.42 ppm to 410.32 ppm
and the average annual growth rate is about 2.33 ppm/a. Taking 2015 as the boundary
the average annual growth from 2010 to 2015 was 2.12 ppm
while the average annual growth from 2016 to 2020 was 2.46 ppm. In 2016
the average CO
2
concentration in the global land area exceeded 400 ppm for the first time
with an annual growth of over 3 ppm
the highest in the past decade. In terms of seasonal changes
the northern hemisphere has the highest in spring and the lowest in late summer and early autumn
while the southern hemisphere has opposite wave phases. The wave amplitude in the northern hemisphere is much higher than that in the southern hemisphere
and the higher the latitude
the greater the fluctuation. The latitudinal distribution characteristics are significant
showing an overall increase and then decrease from south to north. Influenced by factors such as cloud and data quality control
there is a significant decrease near the equator
with peaks appearing at 0°—10°N and 30°N—40°N. There are significant differences in regional distribution
with the highest annual mean occurring in the tropical South America and the lowest in the northern North America
with a difference of nearly 30 ppm. In terms of annual growth rate
the temperate zone of Asia has the highest
while the northern region of Asia has the lowest
with 2.36 ppm/a and 2.27 ppm/a respectively. In the past decade
the rise in CO
2
concentration in global terrestrial regions has been intensifying. At the same time
due to regional development differences
the spatial differences in CO
2
concentration are also intensifying globally. Based on the above results
we can obtain some insights. The concentration of CO
2
caused by industrial activities continues to rise
exacerbating global warming. The necessity and pressure for humans to control industrial emissions are increasing to ensure the sustainable development of humanity and the environment “Earth Home” that humans rely on for survival. Under the promotion of international frameworks and organizations such as the United Nations and the IPCC
the direction of human development and energy development has become a crucial theme
and the status and role of clean energy and alternative energy are particularly important. The global CO
2
monitoring satellite provides an effective and comprehensive monitoring data source for the above work
and there is huge space for the mining and utilization of this data information. The combination of satellite CO
2
observation and atmospheric transport models
as well as assimilation methods
can provide more effective tools for global monitoring and simulation.
GOSATCO2浓度全球陆地区域时空变化特征大气长时序遥感
GOSAT satelliteCO2 concentrationglobal land areaspatio-temporal variation characteristicsatmospherelong time seriesremote sensing
Andres R J, Marland G, Fung I and Matthews E. 1996. A 1°×1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950-1990. Global Biogeochemical Cycles, 10(3): 419-429 [DOI: 10.1029/96GB01523http://dx.doi.org/10.1029/96GB01523]
Bai W G, Zhang X Y and Zhang P. 2010. Temporal and spatial distribution of tropospheric CO2 over China based on satellite observations. Chinese Science Bulletin, 55(31): 3612-3618
白文广, 张兴赢, 张鹏. 2010. 卫星遥感监测中国地区对流层二氧化碳时空变化特征分析. 科学通报, 55(30): 2953-2960 [DOI: 10.1007/s11434-010-4182-4http://dx.doi.org/10.1007/s11434-010-4182-4]
Bu R, Lei L P, Guo L J, Liu D and Zeng Z C. 2015. Temporal and spatial potential applications of satellite remote sensing of atmospheric CO2 concentration monitoring. Journal of Remote Sensing, 19(1): 34-45
布然, 雷莉萍, 郭丽洁, 刘达, 曾招城. 2015. 大气CO2浓度时空变化卫星遥感监测的应用潜力分析. 遥感学报, 19(1): 34-45 [DOI: 10.11834/jrs.20154031http://dx.doi.org/10.11834/jrs.20154031]
Buschmann M, Deutscher N M, Sherlock V, Palm M, Warneke T and Notholt J. 2016. Retrieval of xCO2 from ground-based mid-infrared (NDACC) solar absorption spectra and comparison to TCCON. Atmospheric Measurement Techniques, 9(2): 577-585 [DOI: 10.5194/amt-9-577-2016http://dx.doi.org/10.5194/amt-9-577-2016]
Cogan A J, Boesch H, Parker R J, Feng L, Palmer P I, Blavier J F L, Deutscher N M, Macatangay R, Notholt J, Roehl C, Warneke T and Wunch D. 2012. Atmospheric carbon dioxide retrieved from the Greenhouse Gases Observing Satellite (GOSAT): comparison with ground-based TCCON observations and GEOS-Chem model calculations. Journal of Geophysical Research: Atmospheres, 117(D21): D21301 [DOI: 10.1029/2012JD018087http://dx.doi.org/10.1029/2012JD018087]
Deng A J, Guo H B, Hu J, Jiang C Z, Liu P G and Jing H F. 2020. Temporal and distribution characteristic of CO2 concentration over China based on GOSAT satellite data. Journal of Remote Sensing, 24(3): 319-325
邓安健, 郭海波, 胡洁, 姜成桢, 刘培更, 荆海峰. 2020. GOSAT卫星数据监测中国大陆上空CO2浓度时空变化特征. 遥感学报, 24(3): 319-325 [DOI: 10.11834/jrs.20208324http://dx.doi.org/10.11834/jrs.20208324]
Gunter W D, Wong S, Cheel D B and Sjostrom G. 1998. Large CO2 sinks: their role in the mitigation of greenhouse gases from an international, national (Canadian) and provincial (Alberta) perspective. Applied Energy, 61(4): 209-227 [DOI: 10.1016/S0306-2619(98)00042-7http://dx.doi.org/10.1016/S0306-2619(98)00042-7]
Hamazaki T. 2007. GOSAT-Greenhouse gases observation from space (GOSAT). International Astronautical Federation-58th International Astronautical Congress, 4: 2108-2111
He J H, Cai Y L and Qin P. 2020. Spatial and temporal variations of carbon dioxide and its influencing factors. Chinese Science Bulletin, 65(2/3): 194-202
何江浩, 蔡玉林, 秦鹏. 2020. 二氧化碳的时空变化规律与影响因素分析. 科学通报, 65(2/3): 194-202 [DOI: 10.1360/TB-2019-0022http://dx.doi.org/10.1360/TB-2019-0022]
Intergovernmental Panel on Climate Change (IPCC). 2007. Climate change 2007: synthesis report. Geneva, Switzerland: International Panel Climate Change
Kuze A, Suto H, Nakajima M and Hamazaki T. 2009. Thermal and near infrared sensor for carbon observation fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Applied Optics, 48(35): 6716-6733 [DOI: 10.1364/AO.48.006716http://dx.doi.org/10.1364/AO.48.006716]
Liu R X, Zhang X Y, Liu J and Liu Y G. 2015. A spatial-temporal distribution characteristics study on the atmospheric carbon dioxide observed by GOSAT satellite remote sensing. Journal of Tropical Meteorology, 21(4): 408-416 [DOI: 10.16555/j.1006-8775.2015.04.009http://dx.doi.org/10.16555/j.1006-8775.2015.04.009]
Manabe S and Wetherald R T. 1967. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. Journal of the Atmospheric Sciences, 24(3): 241-259 [DOI: 10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2]
Meng X Y, Zhang X Y, Zhou M Q, Bai W G, Zhou L H, Yu X and Hu Y M. 2018. Validation and analysis of GOSAT XCO2 measurements by TCCON sites. Meteorological Monthly, 44(10): 1306-1317
孟晓阳, 张兴赢, 周敏强, 白文广, 周丽花, 余骁, 胡玥明. 2018. GOSAT卫星二氧化碳遥感产品的验证与分析. 气象, 44(10): 1306-1317 [DOI: 10.7519/j.issn.1000-0526.2018.10.007http://dx.doi.org/10.7519/j.issn.1000-0526.2018.10.007]
Mo L, Wu Z C and Zhang Y. 2021. Spatial and temporal variations of XCO2 in China and its influencing factors analysis. China Environmental Science, 41(6): 2562-2570
莫露, 巫兆聪, 张熠. 2021. 中国XCO2时空分布与影响因素分析. 中国环境科学, 41(6): 2562-2570 [DOI: 10.3969/j.issn.1000-6923.2021.06.008http://dx.doi.org/10.3969/j.issn.1000-6923.2021.06.008]
Qin D H. 2014. Climate change science and sustainable development. Progress in Geography, 33(7): 874-883
秦大河. 2014. 气候变化科学与人类可持续发展. 地理科学进展, 33(7): 874-883 [DOI: 10.11820/dlkxjz.2014.07.002http://dx.doi.org/10.11820/dlkxjz.2014.07.002]
Schneising O, Buchwitz M, Reuter M, Heymann J, Bovensmann H and Burrows J P. 2011. Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY. Atmospheric Chemistry and Physics, 11(6): 2863-2880 [DOI: 10.5194/acp-11-2863-2011http://dx.doi.org/10.5194/acp-11-2863-2011]
Wang H M, Li J T, Zhang Y, Li S S, Zhang L and Chen L F. 2015. Spatial and temporal distribution of near-surface methane concentration over China based on AIRS observations. Journal of Remote Sensing, 19(5): 827-835
王红梅, 李佳田, 张莹, 李莘莘, 张蓝, 陈良富. 2015. 利用AIRS产品分析中国地区近地面甲烷浓度时空特性. 遥感学报, 19(5): 827-835 [DOI: 10.11834/jrs.20154195http://dx.doi.org/10.11834/jrs.20154195]
Wang H M, Jiang F, Wang J, Ju W M and Chen J M. 2019. Terrestrial ecosystem carbon flux estimated using GOSAT and OCO-2 XCO2 retrievals. Atmospheric Chemistry and Physics, 19(18): 12067-12082 [DOI: 10.5194/acp-19-12067-2019http://dx.doi.org/10.5194/acp-19-12067-2019]
Wang S P, Zhang X Y, Wang W H and Fang L. 2015. Global and China-based regional near-surface distributions of CO2 concentrations based on GOSAT L4B data. Science and Technology Review, 33(17): 63-68
王舒鹏, 张兴赢, 王维和, 方莉. 2015. 基于GOSAT L4B数据的全球和中国区域近地面CO2含量变化分析. 科技导报, 33(17): 63-68 [DOI: 10.3981/j.issn.1000-7857.2015.17.006http://dx.doi.org/10.3981/j.issn.1000-7857.2015.17.006]
WMO. 2014. WMO Greenhouse Gas Bulletin: the state of greenhouse gases in the atmosphere based on global observations through 2013.
WMO. 2016. WMO Greenhouse Gas Bulletin: the state of greenhouse gases in the atmosphere based on global observations through 2015.
WMO. 2017. WMO Greenhouse Gas Bulletin: the state of greenhouse gases in the atmosphere based on global observations through 2016.
WMO. 2021. WMO Greenhouse Gas Bulletin: the state of greenhouse gases in the atmosphere based on global observations through 2020.
Wunch D, Toon G C, Blavier J F L, Washenfelder R A, Notholt J, Connor B J, Griffith D W T, Sherlock V and Wennberg P O. 2011. The total carbon column observing network. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1943): 2087-2112 [DOI: 10.1098/RSTA.2010.0240http://dx.doi.org/10.1098/RSTA.2010.0240]
Wunch D, Toon G C, Sherlock V, Deutscher N M, Liu C, Feist D G and Wennberg P O. 2015. The total carbon column observing network’s GGG2014 data version. Oak Ridge: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory
Wunch D, Wennberg P O, Osterman G, Fisher B, Naylor B, Roehl C M, O’Dell C, Mandrake L, Viatte C, Griffith D W, Deutscher N M, Velazco V A, Notholt J, Warneke T, Petri C, De Maziere M, Sha M K, Sussmann R, Rettinger M, Pollard D, Robinson J, Morino I, Uchino O, Hase F, Blumenstock T, Kiel M, Feist D G, Arnold S G, Strong K, Mendonca J, Kivi R, Heikkinen P, Iraci L, Podolske J, Hillyard P W, Kawakami S, Dubey M K, Parker H A, Sepulveda E, Rodriguez O E G, Te Y, Jeseck P, Gunson M R, Crisp D and Eldering A. 2017. Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON. Atmospheric Measurement Techniques, 10(6): 2209-2238 [DOI: 10.5194/amt-2016-227http://dx.doi.org/10.5194/amt-2016-227]
Xiao Z Y, Chen Y F, Lin X F, Liu S H, Xie J H and Xie X Q. 2022. The temporal and spatial variation of CO2 column concentration over China from 2003 to 2018 based on multi-source satellite remote sensing data. Journal of Remote Sensing, 26(12): 2486-2496
肖钟湧, 陈颖锋, 林晓凤, 刘珊红, 谢静晗, 谢先全. 2022. 基于多源卫星遥感数据的中国2003年—2018
年CO2时空变化研究. 遥感学报, 26(12): 2486-2496 [DOI: 10.11834/jrs.20220355http://dx.doi.org/10.11834/jrs.20220355]
Yang Z H, Toon G C, Margolis J S and Wennberg P O. 2002. Atmospheric CO2 retrieved from ground-based near IR solar spectra. Geophysical Research Letters, 29(9): 53-1-53-4 [DOI: 10.1029/2001gl014537http://dx.doi.org/10.1029/2001gl014537]
Zhang S H, Xie B, Zhang H and Zhou X X. 2019. Spatial-temporal distribution characteristics of CO2 over globe and East Asia by AIRS satellite. Journal of Atmospheric and Environmental Optics, 14(6): 442-454
张绍会, 谢冰, 张华, 周喜讯. 2019. 基于AIRS卫星的全球和东亚地区CO2时空特征分析. 大气与环境光学学报, 14(6): 442-454 [DOI: 10.3969/j.issn.1673-6141.2019.06.005http://dx.doi.org/10.3969/j.issn.1673-6141.2019.06.005]
Zhang X Y, Zhang P, Fang Z Y, Qiu H, Li X J and Zhang Y. 2007. The progress in trace gas remote sensing study based on the satellite monitoring. Meteorological Monthly, 33(7): 3-14
张兴赢, 张鹏, 方宗义, 邱红, 李晓静, 张艳. 2007. 应用卫星遥感技术监测大气痕量气体的研究进展. 气象, 33(7): 3-14 [DOI: 10.3969/j.issn.1000-0526.2007.07.001http://dx.doi.org/10.3969/j.issn.1000-0526.2007.07.001]
Zhou M Q, Zhang X Y, Wang P C, Wang S P, Guo L L and Hu L Q. 2015. XCO2 satellite retrieval experiments in short-wave infrared spectrum and ground-based validation. Science China Earth Sciences, 58(7): 1191-1197
周敏强, 张兴赢, 王普才, 王舒鹏, 郭丽莉, 胡列群. 2015. 二氧化碳柱浓度的卫星反演试验及地基验证. 中国科学: 地球科学, 45(6): 856-863 [DOI: 10.1007/s11430-015-5080-zhttp://dx.doi.org/10.1007/s11430-015-5080-z]
Zhou T J, Zhang W X, Chen D L, Zhang X B, Li C, Zuo M and Chen X L. 2022. Understanding and building upon the pioneering work of Nobel Prize in Physics 2021 laureates Syukuro Manabe and Klaus Hasselmann: from the greenhouse effect to Earth system science and beyond. Science China Earth Sciences, 65(4): 589-600
周天军, 张文霞, 陈德亮, 张学斌, 李超, 左萌, 陈晓龙. 2022. 2021年诺贝尔物理学奖解读: 从温室效应到地球系统科学. 中国科学: 地球科学, 52(4): 579-594 [DOI: 10.1360/SSTe-2021-0338http://dx.doi.org/10.1360/SSTe-2021-0338]
相关作者
相关机构