高分遥感共性产品生成和真实性检验技术体系
Technique system of remote sensing product generation and validation of GF common products
- 2023年27卷第3期 页码:544-562
纸质出版日期: 2023-03-07
DOI: 10.11834/jrs.20232531
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-03-07 ,
扫 描 看 全 文
柳钦火,闻建光,周翔,赵坚,李增元,李新,马明国,王维真,廖小罕,刘绍民,范闻捷,肖青,仲波,李静,辛晓洲,李丽,贾立,高志海,金家栋,梁师,邢进,廖楚江,吴一戎.2023.高分遥感共性产品生成和真实性检验技术体系.遥感学报,27(3): 544-562
Liu Q H,Wen J G,Zhou X,Zhao J,Li Z Y,Li X,Ma M G,Wang W Z,Liao X H,Liu S M,Fan W J,Xiao Q,Zhong B,Li J,Xin X Z,Li L,Jia L,Gao Z H,Jin J D,Liang S,Xin J,Liao C J and Wu Y R. 2023. Technique system of remote sensing product generation and validation of GF common products. National Remote Sensing Bulletin, 27(3):544-562
随着高分辨率对地观测系统重大专项的成功实施,GF-1—GF-7七型卫星共19种主要载荷发射升空,形成了中国遥感卫星多谱段、多模式的观测能力,可为各种科研和行业遥感应用提供源源不断的高空间、高时间和高光谱分辨率的高质量遥感数据。如何打通高分卫星遥感数据到信息的转换链,降低高分卫星数据应用门槛、提升高分卫星应用服务成效已成为急需破解的迫切问题。遥感定量产品的误差来源包括传感器成像、几何与辐射定标、数据预处理、定量反演与产品检验等各个环节,提高定量遥感产品精度是一个复杂的系统工程,各行业应用部门和多领域用户难以独立完成全流程数据处理、产品生产和检验。本文在分析高分卫星遥感产品体系的基础上,针对多用户共同需求,梳理了7大类共45种共性定量遥感产品;从全链条误差溯源和质量检验需要出发,提出了高分遥感共性产品生成和检验的技术体系,分析了算法测评—算法优化—产品生产—真实性检验等环节面临的关键技术;进而提出了高分遥感共性产品真实性检验平台与产品定型分系统的初步设计方案,并介绍了系统研发的最新进展;最后对高分共性产品应用前景进行了展望,构建高分遥感共性产品生成与真实性检验技术体系,对于保障高分卫星遥感共性产品精度和质量、提升高分卫星应用服务效益具有重要的意义。
GF-1—GF-7 satellite series with 19 major payloads has been launched with the continuous implementation of the high-resolution Earth Observation System (referred to as GF) in the past decade. This progress is vital in forming the multispectral and multimode observation capability of China’s Earth Observation System. Remote sensing data with high spatial
temporal
and spectral resolution have been obtained and widely used in scientific research and remote sensing applications. However
obtaining high-quality remote sensing information products from the original satellite data is a complicated scientific issue and faces huge challenges. Hence
the conversion chain from GF data to information must be urgently set up to reduce the remote sensing application threshold and improve the effectiveness of application services.
The errors of remote sensing quantitative products are determined by accumulating a series of errors
such as sensor imaging error
calibration error
remote sensing data processing error
and quantitative inversion error. Thus
improving the accuracy of quantitative remote sensing products is a complex system engineering. Completing the whole process
including data processing
retrieval algorithm development
product generation
and validation independently
is challenging. Remote sensing algorithm test and product validation are the two crucial ways for the quality improvement of remote sensing products. Hence
this study proposes the technique system of GF common product generation and validation to improve the quality of GF remote sensing products further
thereby guaranteeing the improvement of the application quality and the extensive application area of GF remote sensing products. Lastly
the current progress of the GF common product validation and algorithm determination system platform is introduced and discussed.
GF common products are required by more than two thematic remote sensing products. They can be validated using
in situ
observations. According to the GF common product system
the number of 39 + 6 products in seven categories are sorted out for the common requirements of multiple users
including geometric products
basic radiation products
land cover and land type products
energy balance products
vegetation products
water products
and atmosphere products. This study presents the technique flowchart of GF common product algorithm determination and product generation. The key technologies of algorithm testing
algorithm optimization
product generation
and validation are developed. Eleven national standards for remote sensing product validation are issued and implemented. Other group standards
such as GF common product generation
ground
in situ
observation
and validation of GF common remote sensing products
are being designed and compiled. Based on these validation technologies and the
in situ
data from the national network of GF remote sensing product validation field sites
the GF common product validation platform and product algorithm determination system platform can ensure the high quality of GF common products.
Building such a technical system for GF common product generation and validation has great relevance for ensuring high accuracy and high quality to improve the efficiency of application services further. It requires the cooperation of multiple researchers from different units to research and develop common product retrieval algorithms. Moreover
the algorithm should be continuously tested to improve the accuracy of common products.
高分卫星遥感反演遥感共性产品算法测评像元真值真实性检验
GF satelliteremote sensing retrievalcommon productalgorithm testground truthproduct validation
China National Space Administration. 2018. 2018 China satellite application report of high-resolution earth observation system (common products). China National Space Administration (国家航天局. 2018. 2018中国高分卫星应用报告(共性产品卷). 国家航天局)
GCOS. 2011. Systematic observation requirements for satellite based products for climate. GCOS-154.
Geng Y L, Tang Y Q, Yin Z Y, Zou B and Feng H H. 2022. Research on scale effect of domestic satellite land cover products considering patch area ratio. Journal of Remote Sensing (Chinese)
耿云龙, 汤玉奇, 尹芝勇, 邹滨, 冯徽徽. 2022. 顾及斑块面积比的国产卫星土地覆盖产品尺度效应研究. 遥感学报 [DOI: 10.11834/jrs.20211213http://dx.doi.org/10.11834/jrs.20211213]
Giuliani G, Egger E, Italiano J, Poussin C, Richard J P and Chatenoux B. 2020. Essential variables for environmental monitoring: what are the possible contributions of earth observation data cubes?. Data, 5(4): 100 [DOI: 10.3390/data5040100http://dx.doi.org/10.3390/data5040100]
Hu C M, Zhang Z and Tang P. 2023. Research on scale effect of domestic satellite land cover products considering patch area ratio. Journal of Remote Sensing, 27(3): 623-634
胡昌苗, 张正, 唐娉. 2023. 国产卫星多光谱数据云与云影检测算法研究. 遥感学报, 27(3): 623-634 [DOI: 10.11834/jrs.20211209http://dx.doi.org/10.11834/jrs.20211209]
He M,Wen J G,You D Q,Tang Y,Wu S B,Hao D L,Lin X W and Gong Z R. 2022. Review of forest Leaf Area Index retrieval over rugged terrain based on remotely sensed data. National Remote Sensing Bulletin, 26(12): 2451-2472
贺敏, 闻建光, 游冬琴, 唐勇, 吴胜标, 郝大磊, 林兴稳, 龚张融. 2022. 山地森林叶面积指数(LAI)遥感估算研究进展.遥感学报, 26(12): 2451-2472 [DOI: 10.11834/jrs.20210244http://dx.doi.org/10.11834/jrs.20210244]
Jin R, Li X, Ma M G, Ge Y, Liu S M, Xiao Q, Wen J G, Zhao K, Xin X P, Ran Y H, Liu Q H and Zhang R H. 2017. Key methods and experiment verification for the validation of quantitative remote sensing products. Advances in Earth Science, 32(6): 630-642
晋锐, 李新, 马明国, 葛咏, 刘绍民, 肖青, 闻建光, 赵凯, 辛晓平, 冉有华, 柳钦火, 张仁华. 2017. 陆地定量遥感产品的真实性检验关键技术与试验验证. 地球科学进展, 32(6): 630-642 [DOI: 10.11867/j.issn.1001-8166.2017.06.0630http://dx.doi.org/10.11867/j.issn.1001-8166.2017.06.0630]
Lawford R. 2014. The GEOSS Water Strategy: From Observations to Decisions. Geneva: Group on Earth Observations
Li L, Xin X Z, Tang Y, Bai J H, Du Y M, Sun L, Wen J G, Zhong B, Wu S L, Zhang H L, Yu S S and Liu Q H. 2023. Fraction of absorbed photosynthetically active radiation inversion algorithm of GF-1 data combining radiative transfer model simulation and deep learning. Journal of Remote Sensing, 27(3): 700-710
李丽, 辛晓洲, 唐勇, 柏军华, 杜永明, 孙林, 闻建光, 仲波, 吴善龙, 张海龙, 余珊珊, 柳钦火. 2023. 辐射传输模型模拟与深度学习结合的高分一号卫星植被光合有效辐射吸收比例产品反演算法. 遥感学报, 27(3): 700-710 [DOI:10.11834/jrs.20235020http://dx.doi.org/10.11834/jrs.20235020]
Li X W, Gao F, Wang J D and Strahler A. 2001. A priori knowledge accumulation and its application to linear BRDF model inversion. Journal of Geophysical Research: Atmospheres, 106(D11): 11925-11935 [DOI: 10.1029/2000JD900639http://dx.doi.org/10.1029/2000JD900639]
Li X W, Gao F, Wang J D, Strahler A H, Lucht W and Schaaf C. 2000. Estimation of the parameter error propagation in inversion based BRDF observations at single sun position. Science in China Series E: Technological Sciences, 43(S1): 9-16 [DOI: 10.1007/BF02916573http://dx.doi.org/10.1007/BF02916573]
Lin X W, Wen J G, Liu Q H, Xiao Q, You D Q, Wu S B, Hao D L and Wu X D. 2018. A multi-scale validation strategy for albedo products over rugged terrain and preliminary application in Heihe River Basin, China. Remote Sensing, 10(2): 156 [DOI: 10.3390/rs10020156http://dx.doi.org/10.3390/rs10020156]
Liu Q H, Cao B, Zeng Y L, Li J, Du Y M, Wen J G, Fan W L, Zhao J and Yang L. 2016. Recent progresses on the remote sensing radiative transfer modeling over heterogeneous vegetation canopy. Journal of Remote Sensing, 20(5): 933-945
柳钦火, 曹彪, 曾也鲁, 李静, 杜永明, 闻建光, 范渭亮, 赵静, 杨乐. 2016. 植被遥感辐射传输建模中的异质性研究进展. 遥感学报, 20(5): 933-945 [DOI: 10.11834/jrs.20166280http://dx.doi.org/10.11834/jrs.20166280]
Liu Q H, Yan G J, Jiao Z T, Xiao Q, Wen J G, Liang S L and Wang J D. 2019. Geometric-optical remote sensing modeling to quantitative remote sensing theory and methodology development: in memory of academician Li Xiaowen. Journal of Remote Sensing, 23(1): 1-10
柳钦火, 阎广建, 焦子锑, 肖青, 闻建光, 梁顺林, 王锦地. 2019. 发展几何光学遥感建模理论, 推动定量遥感科学前行——深切缅怀李小文院士. 遥感学报, 23(1): 1-10 [DOI: 10.11834/jrs.20198077http://dx.doi.org/10.11834/jrs.20198077]
Liu Q H, Zhong B, Tang P, Zhang H H, Li H Y, Wu S L, Xin X Z, Li J, Jia L, Shan X J, Zhang Z, Wen J G, Du Y M, Li L, Yang A X, Li H, Hu G C, Zhao J, Zhang H L, Yu S S, Dou B C and Wu J J. 2018. Remote sensing data products oriented quantitative computing system——The GSC best practice data computing environment 2018. Journal of Global Change Data and Discovery, 2(3): 271-278
柳钦火, 仲波, 唐娉, 张宏海, 李宏益, 吴善龙, 辛晓洲, 李静, 贾立, 单小军, 张正, 闻建光, 杜永明, 李丽, 杨爱霞, 历华, 胡光成, 赵静, 张海龙, 余珊珊, 窦宝成, 吴俊君. 2018. 多源协同定量遥感产品生产系统——2018年中国地理学会地理大数据计算环境“优秀实用案例”. 全球变化数据学报(中英文), 2(3): 271-278 [DOI: 10.3974/geodp.2018.03.04http://dx.doi.org/10.3974/geodp.2018.03.04]
Liu Y K, Ma L L, Wang R F, Zheng Q C, Song P L, Li W, Zhao Y G, Wang N, Gao C X, Hou X X and Jin J. 2023. Time series traceable absolute radiometric calibration of GF-6 WFV based on automatic radiometric calibration field. Journal of Remote Sensing, 27(3): 599-609
刘耀开, 马灵玲, 王任飞, 郑青川, 宋培兰, 李婉, 赵永光, 王宁, 高彩霞, 侯晓鑫, 金金. 2023.基于自动辐射定标场的高分六号宽幅载荷时序绝对辐射定标及趋势分析. 遥感学报, 27(3): 599-609 [DOI:10.11834/jrs.20235017http://dx.doi.org/10.11834/jrs.20235017]
Long T F, Jiao W L, He G J, Wang G Z and Zhang Z M. 2023. Digital orthophoto map products and automated generation algorithms of Chinese optical satellites. Journal of Remote Sensing, 27(3): 635-650
龙腾飞, 焦伟利, 何国金, 王桂周, 张兆明. 2023. 国产光学卫星正射影像产品及自动生成算法. 遥感学报, 27(3): 635-650 [DOI:10.11834/jrs.20235021http://dx.doi.org/10.11834/jrs.20235021]
Ma M G, Che T, Li X, Xiao Q, Zhao K and Xin X P. 2015. A prototype network for remote sensing validation in China. Remote Sensing, 7(5): 5187-5202 [DOI: 10.3390/rs70505187http://dx.doi.org/10.3390/rs70505187]
Ouyang X Y, Dou Y J, Yang J X, Chen X and Wen J G. 2022. High spatiotemporal rugged land surface temperature downscaling over Saihanba Forest Park, China. Remote Sensing, 14(11): 2617 [DOI: 10.3390/rs14112617http://dx.doi.org/10.3390/rs14112617]
Peng J J, Liu Q, Wen J G, Liu Q H, Tang Y, Wang L Z, Dou B C, You D Q, Sun C K, Zhao X J, Feng Y B and Shi J. 2015. Multi-scale validation strategy for satellite albedo products and its uncertainty analysis. Science China Earth Sciences, 58(4): 573-588 [DOI: 10.1007/s11430-014-4997-yhttp://dx.doi.org/10.1007/s11430-014-4997-y]
Pereira H M, Ferrier S, Walters M, Geller G N, Jongman R H G, Scholes R J, Bruford M W, Brummitt N, Butchart S H M, Cardoso A C, Coops N C, Dulloo E, Faith D P, Freyhof J, Gregory R D, Heip C, Höft R, Hurtt G, Jetz W, Karp D S, McGeoch M A, Obura D, Onoda Y, Pettorelli N, Reyers B, Sayre R, Scharlemann J P W, Stuart S N, Turak E, Walpole M and Wegmann M. 2013. Essential biodiversity variables. Science, 339(6117): 277-278 [DOI: 10.1126/science.1229931http://dx.doi.org/10.1126/science.1229931]
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. 2018. GB/T 36296-2018 Guide for the validation of remote sensing products. Beijing: Standards Press of China
国家市场监督管理总局, 国家标准化管理委员会. 2018. GB/T 36296-2018 遥感产品真实性检验导则. 北京: 中国标准出版社
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. 2019. GB/T 38026-2019 Gradation standard for multispectral data products of remote sensing satellite. Beijing: Standards Press of China
国家市场监督管理总局, 国家标准化管理委员会. 2019. GB/T 38026-2019 遥感卫星多光谱数据产品分级. 北京: 中国标准出版社
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. 2020. GB/T 39468-2020 General methods for the validation of terrestrial quantitative remote sensing products. Beijing: Standards Press of China
国家市场监督管理总局, 国家标准化管理委员会. 2020. GB/T 39468-2020 陆地定量遥感产品真实性检验通用方法. 北京: 中国标准出版社
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. 2021a. GB/T 40033-2021 Validation of land surface evapotranspiration remote sensing products. Beijing: Standards Press of China
国家市场监督管理总局, 国家标准化管理委员会. 2021a. GB/T 40033-2021 地表蒸散发遥感产品真实性检验. 北京: 中国标准出版社
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. 2021b. GB/T 40034-2021 Validation of leaf area index remote sensing products. Beijing: Standards Press of China
国家市场监督管理总局, 国家标准化管理委员会. 2021b. GB/T 40034-2021 叶面积指数遥感产品真实性检验. 北京: 中国标准出版社
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. 2021c. GB/T 40038-2021 Validation of vegetation index remote sensing products. Beijing: Standards Press of China
国家市场监督管理总局, 国家标准化管理委员会. 2021c. GB/T 40038-2021 植被指数遥感产品真实性检验. 北京: 中国标准出版社
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. 2021d. GB/T 40039-2021 Validation of soil moisture remote sensing products. Beijing: Standards Press of China
国家市场监督管理总局, 国家标准化管理委员会. 2021d. GB/T 40039-2021 土壤水分遥感产品真实性检验. 北京: 中国标准出版社
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. 2022a. GB/T 41279-2022 Validation of albedo remote sensing products. Beijing: Standards Press of China
国家市场监督管理总局, 国家标准化管理委员会. 2022a. GB/T 41279-2022 反照率遥感产品真实性检验. 北京: 中国标准出版社
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. 2022b. GB/T 41281-2022 Validation of photosynthetically active radiation remote sensing products. Beijing: Standards Press of China
国家市场监督管理总局, 国家标准化管理委员会. 2022b. GB/T 41281-2022 光合有效辐射遥感产品真实性检验. 北京: 中国标准出版社
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. 2022c. GB/T 41282-2022 Validation of fractional vegetation cover remote sensing products. Beijing: Standards Press of China
国家市场监督管理总局, 国家标准化管理委员会. 2022c. GB/T 41282-2022 植被覆盖度遥感产品真实性检验. 北京: 中国标准出版社
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. 2023a. GB/T 41535-2022 Validation of aerosol optical depth remote sensing products. Beijing: Standards Press of China
国家市场监督管理总局, 国家标准化管理委员会. 2023a. GB/T 41535-2022 气溶胶光学厚度遥感产品真实性检验. 北京: 中国标准出版社
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. 2023b. GB/T 41536-2022 Validation of land cover remote sensing products. Beijing: Standards Press of China
国家市场监督管理总局, 国家标准化管理委员会. 2023b. GB/T 41536-2022 土地覆被遥感产品真实性检验. 北京: 中国标准出版社
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. 2023c. GB/T 41537-2022 Validation of snow cover remote sensing products. Beijing: Standards Press of China
国家市场监督管理总局, 国家标准化管理委员会. 2023c. GB/T 41537-2022积雪面积遥感产品真实性检验. 北京: 中国标准出版社
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. 2023d. GB/T 41534-2022 Validation of surface temperature remote sensing products. Beijing: Standards Press of China
国家市场监督管理总局, 国家标准化管理委员会. 2023d. GB/T 41534-2022 地表温度遥感产品真实性检验. 北京: 中国标准出版社
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. 2023e. GB/T 41538-2022 Validation of surface emissivity remote sensing products. Beijing: Standards Press of China
国家市场监督管理总局, 国家标准化管理委员会. 2023e. GB/T 41534-2022 地表发射率遥感产品真实性检验. 北京: 中国标准出版社
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. 2023d. GB/T 41540-2022 Selection and arrangement of the surface observation field for the validation of terrestrial remote sensing products. Beijing: Standards Press of China
国家市场监督管理总局, 国家标准化管理委员会. 2023f. GB/T 41540-2022 陆地遥感产品真实性检验地面观测场的选址和布设. 北京: 中国标准出版社
Tong X D. 2016. Development of China high-resolution earth observation system. Journal of Remote Sensing, 20(5): 775-780
童旭东. 2016. 中国高分辨率对地观测系统重大专项建设进展. 遥感学报, 20(5): 775-780 [DOI: 10.11834/jrs.20166302http://dx.doi.org/10.11834/jrs.20166302]
Wang S G, Li X, Ge Y, Jin R, Ma M G, Liu Q H, Wen J G and Liu S M. 2016. Validation of regional-scale remote sensing products in China: from site to network. Remote Sensing, 8(12): 980 [DOI: 10.3390/rs8120980http://dx.doi.org/10.3390/rs8120980]
Wen J G, Dou B C, You D Q, Tang Y, Xiao Q, Liu Q and Liu Q H. 2017. Forward a small-timescale BRDF/albedo by Multisensor Combined BRDF inversion model. IEEE Transactions on Geoscience and Remote Sensing, 55(2): 683-697 [DOI: 10.1109/TGRS.2016.2613899http://dx.doi.org/10.1109/TGRS.2016.2613899]
Wen J G, Wu X D, Wang J P, Tang R Q, Ma D J, Zeng Q C, Gong B C and Xiao Q. 2022. Characterizing the effect of spatial heterogeneity and the deployment of sampled plots on the uncertainty of ground “Truth” on a coarse grid scale: case study for near-infrared (NIR) surface reflectance. Journal of Geophysical Research: Atmospheres, 127(11): e2022JD036779 [DOI: 10.1029/2022JD036779http://dx.doi.org/10.1029/2022JD036779]
Wen J G, Xiao Q, Zhong S Y, Tang Y, Chen X, Wei Q F, Wu X D, Lin X W, Ouyang X Y, You D Q and Liu Q H. 2023. Technology system for product validation and algorithm test of GF common products and an application example. Journal of Remote Sensing, 27(3): 780-788
闻建光, 肖青, 钟守熠, 唐勇, 陈曦, 魏秋方, 吴小丹, 林兴稳, 欧阳晓莹, 游冬琴, 柳钦火. 2023. 高分遥感共性产品算法测评与真实性检验技术体系及应用实例. 遥感学报, 27(3): 780-789 [DOI: 10.11834/jrs.20221716http://dx.doi.org/10.11834/jrs.20221716]
Wu X D, Wen J G, Xiao Q, Liu Q, Peng J J, Dou B C, Li X H, You D Q, Tang Y and Liu Q H. 2016. Coarse scale in situ albedo observations over heterogeneous snow-free land surfaces and validation strategy: a case of MODIS albedo products preliminary validation over northern China. Remote Sensing of Environment, 184: 25-39 [DOI: 10.1016/j.rse.2016.06.013http://dx.doi.org/10.1016/j.rse.2016.06.013]
Wu X D, Wen J G, Xiao Q, Wang J P, Ma D J and Lin X W. 2021. A multiscale nested sampling method for representative albedo observations at various pixel scales. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 8193-8207 [DOI: 10.1109/JSTARS.2021.3105562http://dx.doi.org/10.1109/JSTARS.2021.3105562]
Wu X D, Wen J G, Xiao Q and You D Q. 2020. Upscaling of single-site-based measurements for validation of long-term coarse-pixel albedo products. IEEE Transactions on Geoscience and Remote Sensing, 58(5): 3411-3425 [DOI: 10.1109/TGRS.2019.2954879http://dx.doi.org/10.1109/TGRS.2019.2954879]
Wu X D, Xiao Q, Wen J G, You D Q and Hueni A. 2019. Advances in quantitative remote sensing product validation: overview and current status. Earth-Science Reviews, 196: 102875 [DOI: 10.1016/j.earscirev.2019.102875http://dx.doi.org/10.1016/j.earscirev.2019.102875]
Xu B D, Li J, Park T, Liu Q H, Zeng Y L, Yin G F, Zhao J, Fan W L, Yang L, Knyazikhin Y and Myneni R B. 2018. An integrated method for validating long-term leaf area index products using global networks of site-based measurements. Remote Sensing of Environment, 209: 134-151 [DOI: 10.1016/j.rse.2018.02.049http://dx.doi.org/10.1016/j.rse.2018.02.049]
Xu G H, Liu Q H, Chen L F and Liu L Y. 2016. Remote sensing for China’s sustainable development: opportunities and challenges. Journal of Remote Sensing, 20(5): 679-688
徐冠华, 柳钦火, 陈良富, 刘良云. 2016. 遥感与中国可持续发展: 机遇和挑战. 遥感学报, 20(5): 679-688 [DOI: 10.11834/jrs.20166308http://dx.doi.org/10.11834/jrs.20166308]
You D Q, Wen J G, Tang Y, Liu Q, Zhong S Y, Han Y, Gong B C, Zhong B, Wu S L and Liu Q H. 2023. The GaoFen land surface albedo product based on the high-spatial-and-temporal-resolution BRDF priori-knowledge and its preliminary validation. Journal of Remote Sensing, 27(3): 738-747
游冬琴, 闻建光, 唐勇, 刘强, 钟守熠, 韩源, 宫宝昌, 仲波, 吴善龙, 柳钦火. 2023. 基于高时空分辨率BRDF 先验知识的高分卫星地表反照率产品及其初步验证. 遥感学报, 27(3): 738-747 [DOI:10.11834/jrs.20235018http://dx.doi.org/10.11834/jrs.20235018]
Zeng Y L, Li J, Liu Q H, Li L H, Xu B D, Yin G F and Peng J J. 2014. A sampling strategy for remotely sensed LAI product validation over heterogeneous land surfaces. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(7): 3128-3142 [DOI: 10.1109/JSTARS.2014.2312231http://dx.doi.org/10.1109/JSTARS.2014.2312231]
Zeng Y L, Li J, Liu Q H, Qu Y H, Huete A R, Xu B D, Yin G F and Zhao J. 2015. An optimal sampling design for observing and validating long-term leaf area index with temporal variations in spatial heterogeneities. Remote Sensing, 7(2): 1300-1319 [DOI: 10.3390/rs70201300http://dx.doi.org/10.3390/rs70201300]
Zhang F F, Li J S, Wang C and Wang S L. 2023. Estimation of water quality parameters of GF-1 WFV in turbid water based on soft classification. Journal of Remote Sensing, 27(3): 769-779
张方方, 李俊生, 王超, 王胜蕾. 2023. 高分一号卫星浑浊水体水质参数软分类反演. 遥感学报, 27(3): 769-779[DOI:10.11834/jrs.20235024http://dx.doi.org/10.11834/jrs.20235024]
Zhang H, Li J, Liu Q H, Zhang Z X, Zhu X R, Liu C, Zhao J, Dong Y D, Xu B D and Meng J H. 2023. GF-1 leaf area index product across China based on three-dimensional stochastic radiation transfer model. Journal of Remote Sensing, 27(3): 677-688
张虎, 李静, 柳钦火, 张召星, 朱欣然, 刘畅, 赵静, 董亚冬, 徐保东, 蒙继华. 2023. 基于三维随机辐射传输模型的高分一号中国叶面积指数产品算法. 遥感学报, 27(3): 677-688 [DOI:10.11834/jrs.20235016http://dx.doi.org/10.11834/jrs.20235016]
Zhang H L, Wang B C, Li L, Xin X Z, Wen J G, Tang Y, Zhong B, Wu S L, Yu S S and Liu Q H. 2023. A para metric model to estimate photosynthetically active radiation products from synergized GF-1, FY-4 and Himawari-8 data. Journal of Remote Sensing, 27(3): 748-757
张海龙, 王保清, 李丽, 辛晓洲, 闻建光, 唐勇, 仲波, 吴善龙, 余珊珊, 柳钦火. 2023. 融合高分一号、风云四号及葵花-8的光合有效辐射遥感方法及产品研究. 遥感学报, 27(3): 748-757 [DOI:10.11834/jrs.20235029http://dx.doi.org/10.11834/jrs.20235029]
Zhang Y, Jia Z Z, Liu S M, Xu Z W, Xu T R, Yao Y J, Ma Y F, Song L S, Li X, Hu X, Wang Z Y, Guo Z X and Zhou J. 2020. Advances in validation of remotely sensed land surface evapotranspiration. Journal of Remote Sensing, 24(8): 975-999
张圆, 贾贞贞, 刘绍民, 徐自为, 徐同仁, 姚云军, 马燕飞, 宋立生, 李相, 胡骁, 王泽宇, 郭枝虾, 周纪. 2020. 遥感估算地表蒸散发真实性检验研究进展. 遥感学报, 24(8): 975-999 [DOI: 10.11834/jrs.20209099http://dx.doi.org/10.11834/jrs.20209099]
Zhang Z, Li H Y, Hu C M and Tang P. 2023. GF quantitative remote sensing production system: Core design. Journal of Remote Sensing, 27(3): 651-664
张正, 李宏益, 胡昌苗, 唐娉. 2023. 高分遥感共性产品生产系统关键设计. 遥感学报, 27(3): 651-664 [DOI: 10.11834/jrs.20210420http://dx.doi.org/10.11834/jrs.20210420]
Zhang Z X, Li J, Liu Q H, Zhao J,Dong Y D, Li S Z, Wen Y, Yu W T. 2023. Verification and analysis of high spatial-temporal resolution vegetation index product based on GF-1 satellite data. Journal of Remote Sensing, 27(3): 665-676
张召星, 李静, 柳钦火, 赵静, 董亚冬, 李松泽, 文远, 于文涛. 2023. 高分一号卫星高时空分辨率植被指数产品验证与分析. 遥感学报. 27(3): 665-676 [DOI: 10.11834/jrs.20235028http://dx.doi.org/10.11834/jrs.20235028]
Zhao J, Li J, Mu X H, Zhang Z X, Dong Y D, Wu S L, Zhong B and Liu Q H. 2023. Validation and analysis the fractional vegetation cover product from GF-1 satellite data in China. Journal of Remote Sensing, 27(3): 689-699
赵静, 李静, 穆西晗, 张召星, 董亚冬, 吴善龙, 仲波, 柳钦火. 2023. 高分一号卫星中国植被覆盖度高时空分辨率产品验证与分析. 遥感学报, 27(3): 689-699 [DOI: 10.11834/jrs.20235015http://dx.doi.org/10.11834/jrs.20235015]
Zheng C L, Jia L and Hu G C. 2023. Evapotranspiration Estimation at 16 m resolution in China based on GF-1 Satellite Remote Sensing Datasets. Journal of Remote Sensing, 27(3): 758-768
郑超磊, 贾立, 胡光成. 2023. 高分一号卫星遥感数据驱动ETMonitor 模型估算16 m 分辨率蒸散发及验证. 遥感学报, 27(3): 758-768 [DOI: 10.11834/jrs.20235026http://dx.doi.org/10.11834/jrs.20235026]
Zhong B, Yang A X, Liu Q H, Wu S L, Shan X J, Mu X H, Hu L F and Wu J J. 2021. Analysis ready data of the Chinese GaoFen satellite data. Remote Sensing, 13(9): 1709 [DOI: 10.3390/rs13091709http://dx.doi.org/10.3390/rs13091709]
2018 China satellite application report of high-resolution earth observation system (common products). 2018. State administration of science, technology and industry for national defence. (2018中国高分卫星应用报告(共性产品卷). 2018. 国家国防科技工业局)
相关作者
相关机构