2010年—2022年全球湿地高光谱遥感研究进展与展望
Research progress and prospects of hyperspectral remote sensing for global wetland from 2010 to 2022
- 2023年27卷第6期 页码:1281-1299
纸质出版日期: 2023-06-07
DOI: 10.11834/jrs.20232620
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-06-07 ,
扫 描 看 全 文
孙伟伟,刘围围,王煜淼,赵锐,黄明珠,王耀,杨刚,孟祥超.2023.2010年—2022年全球湿地高光谱遥感研究进展与展望.遥感学报,27(6): 1281-1299
Sun W W, Liu W W, Wang Y M, Zhao R, Huang M Z, Wang Y, Yang G and Meng X C. 2023. Research progress and prospects of hyperspectral remote sensing for global wetland from 2010 to 2022. National Remote Sensing Bulletin, 27(6):1281-1299
湿地位于陆地和水生生态系统之间的过渡地带,具有维持生态平衡,保护生态多样性、涵养水源等重要作用。高光谱遥感具有波段窄、波段数多和信息丰富等优势,已经成为湿地监测的重要技术手段。本文首先梳理了2010年以来的湿地高光谱中英文期刊论文,分析了作者所属国家/机构、研究热点和关键词等信息。其次,从载荷平台、信息处理、遥感制图和定量反演4个方面,厘清了当前国内外湿地高光谱遥感的研究现状。最后,提出了湿地高光谱遥感亟待解决的问题和未来发展方向。本文研究旨在为高光谱遥感和湿地应用的交叉研究指明方向,对湿地遥感前沿理论和技术发展具有重要意义。
Wetlands are transitional zones between terrestrial and aquatic ecosystems and play important roles in maintaining ecological balance
protecting ecological diversity
conserving water sources
and regulating climate. However
traditional field investigations and panchromatic and multispectral remote sensing technologies cannot meet the practical needs of current wetland monitoring. Hyperspectral remote sensing technology has become an important approach for wetland monitoring owing to its advantages of high spectral resolution and rich spectral information. This review summarizes the related literature on the hyperspectral application of wetlands from 2010 to the present.
First
the literature was analyzed using CiteSpace software. Then
the country/institution of authors
international cooperation
keywords
research hotspots
and research trends were clarified. Finally
the feature extraction and dataset processing methods of hyperspectral datasets and their progress in wetland mapping and quantitative inversion were determined.
China and the United States are the top two countries in terms of the number of hyperspectral wetland studies
but only a few international collaborations have been pursued. In addition
the classification of vegetation in wetlands is a hot research topic. Spartina alterniflora
reed
water quality
and soil properties have become the focus of hyperspectral wetland research. Machine learning methods represented by Random Forests (RFs) play an important role in wetland hyperspectral research. However
studies on classification and inversion based on deep learning methods are limited. Furthermore
under the background of global warming
coastal wetlands have received widespread attention from researchers worldwide. For hyperspectral remote sensing sensors
China’s spaceborne hyperspectral platforms have developed rapidly
but foreign countries have dominated ground and near-ground hyperspectral remote sensing platforms
with a spectral coverage range of 350—1000 nm. In terms of hyperspectral information extraction and image processing
studies have mainly focused on traditional feature extraction and classification methods
such as PCA
MNF
RF
decision trees
and spectral angle mappers. The processing and feature extraction of hyperspectral data based on deep learning feature extraction is expected to be an important research direction in the future. Hyperspectral wetland mapping mainly focuses on wetland vegetation
mangroves
and salt marsh vegetation. Nonetheless
the scale of existing research has been limited to small areas
such as nature reserves or national wetland parks
and the mapping algorithm continues to rely on traditional methods
such as RF and support vector machines. More refined tree species identification and mapping from the use of hyperspectral images is a relevant future research direction. Research on hyperspectral wetland quantitative inversion has mostly focused on chlorophyll and aboveground biomass. In the inversion process
the sensitive band is determined using the correlation coefficient between the ground measurement and the hyperspectral band or spectral index. Simple models
such as linear
quadratic polynomial
and logarithmic functions
are subsequently constructed to obtain the estimated biophysical parameters. Deep learning algorithms have good application prospects in hyperspectral band feature selection and inversion estimation models. Moreover
given the complexity of wetland vegetation
small-scale or point-scale parameter inversion is taken as the main research scale. Large-scale hyperspectral wetland quantitative inversion is difficult to implement due to the existence of high wetland heterogeneity. The resolution of hyperspectral images is not high enough
and mixed pixels exist.
The fusion of multisource remote sensing data
such as multispectral-hyperspectral fusion
to improve the resolution or the development of corresponding spectral unmixing algorithms is the future direction of quantitative analysis for hyperspectral remote sensing applications in wetlands.
高光谱遥感湿地文献分析高光谱载荷平台信息提取红树林盐沼定量反演
hyperspectral remote sensingwetlandsliterature analysishyperspectral payload platforminformation extractionmangrove forestsalt marshquantitative inversion
Adam E, Mutanga O, Abdel-Rahman E M and Ismail R. 2014. Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: exploratory of in situ hyperspectral indices and random forest regression. International Journal of Remote Sensing, 35(2): 693-714 [DOI: 10.1080/01431161.2013.870676http://dx.doi.org/10.1080/01431161.2013.870676]
Adam E M, Mutanga O, Rugege D and Ismail R. 2012. Discriminating the papyrus vegetation (Cyperus papyrus L.) and its co-existent species using random forest and hyperspectral data resampled to HYMAP. International Journal of Remote Sensing, 33(2): 552-569 [DOI: 10.1080/01431161.2010.543182http://dx.doi.org/10.1080/01431161.2010.543182]
Ai J Q, Chen W H, Luo L J and Zhang W L. 2015. Spectral discrimination of the invasive species spartina alterniflora based on the measured hyperspectral data. Science of Surveying and Mapping, 40(10): 118-122
艾金泉, 陈文惠, 罗丽娟, 章文龙. 2015. 入侵种互花米草的光谱分层分析方法. 测绘科学, 40(10): 118-122 [DOI: 10.16251/j.cnki.1009-2307.2015.10.024http://dx.doi.org/10.16251/j.cnki.1009-2307.2015.10.024]
Anand A, Pandey P C, Petropoulos G P, Pavlides A, Srivastava P K, Sharma J K and Malhi R K M. 2020. Use of hyperion for mangrove forest carbon stock assessment in Bhitarkanika Forest Reserve: a contribution towards blue carbon initiative. Remote Sensing, 12(4): 597 [DOI: 10.3390/rs12040597http://dx.doi.org/10.3390/rs12040597]
Artigas F and Pechmann I C. 2010. Balloon imagery verification of remotely sensed Phragmites australis expansion in an urban estuary of New Jersey, USA. Landscape and Urban Planning, 95(3): 105-112 [DOI: 10.1016/j.landurbplan.2009.12.007http://dx.doi.org/10.1016/j.landurbplan.2009.12.007]
Barducci A, Guzzi D, Marcoionni P and Pippi I. 2009. Aerospace wetland monitoring by hyperspectral imaging sensors: a case study in the coastal zone of San Rossore Natural Park. Journal of Environmental Management, 90(7): 2278-2286 [DOI: 10.1016/j.jenvman.2007.06.033http://dx.doi.org/10.1016/j.jenvman.2007.06.033]
Behera M D, Barnwal S, Paramanik S, Das P, Bhattyacharya B K, Jagadish B, Roy P S, Ghosh S M and Behera S K. 2021. Species-level classification and mapping of a mangrove forest using random forest—utilisation of AVIRIS-NG and sentinel data. Remote Sensing, 13(11): 2027 [DOI: 10.3390/rs13112027http://dx.doi.org/10.3390/rs13112027]
Belluco E, Camuffo M, Ferrari S, Modenese L, Silvestri S, Marani A and Marani M. 2006. Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing. Remote Sensing of Environment, 105(1): 54-67 [DOI: 10.1016/j.rse.2006.06.006http://dx.doi.org/10.1016/j.rse.2006.06.006]
Brooks C N, Grimm A G, Marcarelli A M and Dobson R J. 2019. Multiscale collection and analysis of submerged aquatic vegetation spectral profiles for Eurasian watermilfoil detection. Journal of Applied Remote Sensing, 13(3): 037501 [DOI: 10.1117/1.Jrs.13.037501http://dx.doi.org/10.1117/1.Jrs.13.037501]
Byrd K B, O’Connell J L, Di Tommaso S and Kelly M. 2014. Evaluation of sensor types and environmental controls on mapping biomass of coastal marsh emergent vegetation. Remote Sensing of Environment, 149: 166-180 [DOI: 10.1016/j.rse.2014.04.003http://dx.doi.org/10.1016/j.rse.2014.04.003]
Cao J J, Leng W C, Liu K, Liu L, He Z and Zhu Y H. 2018a. Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models. Remote Sensing, 10(1): 89 [DOI: 10.3390/rs10010089http://dx.doi.org/10.3390/rs10010089]
Cao J J, Liu K, Liu L, Zhu Y H, Li J and He Z. 2018b. Identifying mangrove species using field close-range snapshot hyperspectral imaging and machine-learning techniques. Remote Sensing, 10(12): 2047 [DOI: 10.3390/rs10122047http://dx.doi.org/10.3390/rs10122047]
Cao J J, Liu K, Zhuo L, Liu L, Zhu Y H and Peng L H. 2021. Combining UAV-based hyperspectral and LiDAR data for mangrove species classification using the rotation forest algorithm. International Journal of Applied Earth Observation and Geoinformation, 102: 102414 [DOI: 10.1016/j.jag.2021.102414http://dx.doi.org/10.1016/j.jag.2021.102414]
Chai Y, Ruan R Z, Chai G W and Fu Q N. 2016. Species identification of wetland vegetation based on spectral characteristics. Remote Sensing for Land and Resources, 28(3): 86-90
柴颖, 阮仁宗, 柴国武, 傅巧妮. 2016. 基于光谱特征的湿地植物种类识别. 国土资源遥感, 28(3): 86-90 [DOI: 10.6046/gtzyyg.2016.03.14http://dx.doi.org/10.6046/gtzyyg.2016.03.14]
Chai Y, Ruan R Z, Fu Q N and Sui X Z. 2015. Object-oriented information extraction of wetland vegetation using hyperspectral image data. Geospatial Information, 13(4): 83-85, 92
柴颖, 阮仁宗, 傅巧妮, 岁秀珍. 2015. 面向对象的高光谱影像湿地植被信息提取. 地理空间信息, 13(4): 83-85, 92 [DOI: 10.3969/j.issn.1672-4623.2015.04.030http://dx.doi.org/10.3969/j.issn.1672-4623.2015.04.030]
Chakravortty S and Sinha D. 2015. Analysis of multiple scattering of radiation amongst end members in a mixed pixel of hyperspectral data for identification of mangrove species in a mixed stand. Journal of the Indian Society of Remote Sensing, 43(3): 559-69 [DOI: 10.1007/s12524-014-0437-xhttp://dx.doi.org/10.1007/s12524-014-0437-x]
Chakravortty S and Ghosh D. 2018. Development of a model for detection of saline blanks amongst mangrove species on hyperspectral image data. Current Science, 115(3): 541-548 [DOI: 10.18520/cs/v115/i3/541-548http://dx.doi.org/10.18520/cs/v115/i3/541-548]
Chang M H, Meng X C, Sun W W, Yang G and Peng J T. 2021. Collaborative coupled hyperspectral unmixing based subpixel change detection for analyzing coastal wetlands. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 8208-8224 [DOI: 10.1109/jstars.2021.3104164http://dx.doi.org/10.1109/jstars.2021.3104164]
Chaube N R, Lele N, Misra A, Murthy T V R, Manna S, Hazra S, Panda M and Samal R N. 2019. Mangrove species discrimination and health assessment using AVIRIS-NG hyperspectral data. Current Science, 116(7): 1136-1142 [DOI: 10.18520/cs/v116/i7/1136-1142http://dx.doi.org/10.18520/cs/v116/i7/1136-1142]
Chen C, Ma Y, Hu Y B and Zhang J Y. 2019. A Convolution neural network model with adaptive learning rate and its application-a case study of remote sensing classification of coastal wetland. Marine Environmental Science, 38(4): 621-627
陈琛, 马毅, 胡亚斌, 张靖宇. 2019. 一种自适应学习率的卷积神经网络模型及应用——以滨海湿地遥感分类为例. 海洋环境科学, 38(4): 621-627 [DOI: 10.12111/j.mes20190421http://dx.doi.org/10.12111/j.mes20190421]
Chen C, Ma Y and Ren G B. 2019. A convolutional neural network with fletcher-reeves algorithm for hyperspectral image classification. Remote Sensing, 11(11): 1325 [DOI: 10.3390/rs11111325http://dx.doi.org/10.3390/rs11111325]
Chen W R. 2021. Gaofen5 02 star. Satellite Application, (10): 12
陈卫荣. 2021. 高分五号02星. 卫星应用, (10): 12
Chu J L, Zhang J, Ren G B and Liang J. 2015. A hyperspectral image classification method based on maximum assignment. Marine Sciences, 39(2): 72-78
初佳兰, 张杰, 任广波, 梁建. 2015. 一种基于众数赋值的高光谱图像地物分类方法. 海洋科学, 39(2): 72-78 [DOI: 10.11759/hykx20141011009http://dx.doi.org/10.11759/hykx20141011009]
Cui B G, Li X H, Wu J, Ren G B and Lu Y. 2022. Tiny-scene embedding network for coastal wetland mapping using Zhuhai-1 hyperspectral images. IEEE Geoscience and Remote Sensing Letters, 19: 2504105 [DOI: 10.1109/LGRS.2022.3157707http://dx.doi.org/10.1109/LGRS.2022.3157707]
Cui B G, Zhuang Z J, Ren G B, Wu P Q and Zhang J. 2015. Evaluation of the prime hyperspectral endmember extraction algorithm in Yellow River Estuarine wetland. Marine Science, 39(2): 104-109
崔宾阁, 庄仲杰, 任广波, 吴培强, 张杰. 2015. 典型高光谱图像端元提取算法在黄河口湿地应用评价研究. 海洋科学, 39(2): 104-109 [DOI: 10.11759/hykx20141011008http://dx.doi.org/10.11759/hykx20141011008]
Cui X F and Liu Z J. 2018. Wetland vegetation classification based on object-based classification method and multi-source remote sensing images. Geomatics and Spatial Information Technology, 41(8): 113-116
崔小芳, 刘正军. 2018. 基于随机森林分类方法和多源遥感数据的湿地植被精细分类. 测绘与空间地理信息, 41(8): 113-116 [DOI: 10.3969/j.issn.1672-5867.2018.08.030http://dx.doi.org/10.3969/j.issn.1672-5867.2018.08.030]
Darko P O, Kalacska M, Arroyo-Mora J P and Fagan M E. 2021. Spectral complexity of hyperspectral images: a new approach for mangrove classification. Remote Sensing, 13(13): 2604. [DOI: 10.3390/rs13132604http://dx.doi.org/10.3390/rs13132604]
Du B J, Mao D H, Wang Z M, Qiu Z Q, Yan H Q, Feng K D and Zhang Z B. 2021. Mapping wetland plant communities using unmanned aerial vehicle hyperspectral imagery by comparing object/pixel-based classifications combining multiple machine-learning algorithms. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 8249-8258 [DOI: 10.1109/jstars.2021.3100923http://dx.doi.org/10.1109/jstars.2021.3100923]
Du Y K, Wang J, Liu Z J, Yu H Y, Li Z H and Cheng H. 2019. Evaluation on spaceborne multispectral images, airborne hyperspectral, and LiDAR data for extracting spatial distribution and estimating aboveground biomass of wetland vegetation Suaeda salsa. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(1): 200-209 [DOI: 10.1109/jstars.2018.2886046http://dx.doi.org/10.1109/jstars.2018.2886046]
DuBois S, Desai A R, Singh A, Serbin S P, Goulden M L, Baldocchi D D, Ma S, Oechel W C, Wharton S, Kruger E L and Townsend P A. 2018. Using imaging spectroscopy to detect variation in terrestrial ecosystem productivity across a water‐stressed landscape. Ecological Applications, 28(5): 1313-1324 [DOI: 10.1002/eap.1733http://dx.doi.org/10.1002/eap.1733]
Dugin S, Sybirtseva O, Golubov S and Dorofey Y. 2019. Verification of multispectral data processing for the Sentinel-2A bands, field ASD FieldSpec® 3FR and UAV with the DJI STS-VIS. Ukrainian Journal of Remote Sensing, (21): 29-39 [DOI: 10.36023/UJRS.2019.21.147http://dx.doi.org/10.36023/UJRS.2019.21.147]
Eon R S, Goldsmith S, Bachmann C M, Tyler A C, Lapszynski C S, Badura G P, Osgood D T and Brett R. 2019. Retrieval of salt marsh above-ground biomass from high-spatial resolution hyperspectral imagery using PROSAIL. Remote Sensing, 11(11): 1385 [DOI: 10.3390/rs11111385http://dx.doi.org/10.3390/rs11111385]
Gao C J, Jiang X P, Zhen J N, Wang J J, Wu G F. 2022. Mangrove species classification with combination of WorldView-2 and Zhuhai-1 satellite images. National Remote Sensing Bulletin, 26(6): 1155-1168
高常军, 蒋侠朋, 甄佳宁, 王俊杰, 邬国锋. 2022. 耦合WorldView-2和珠海一号影像的红树林物种分布. 遥感学报, 26(6): 1155-1168 [DOI:10.11834/jrs.20221487http://dx.doi.org/10.11834/jrs.20221487]
Gao Y H, Li W, Zhang M M, Wang J B, Sun W W, Tao R and Du Q. 2022a. Hyperspectral and multispectral classification for coastal wetland using depthwise feature interaction network. IEEE Transactions on Geoscience and Remote Sensing, 60: 5512615 [DOI: 10.1109/Tgrs.2021.3097093http://dx.doi.org/10.1109/Tgrs.2021.3097093]
Gao Y H, Song X K, Li W, Wang J B, He J L, Jiang X Y and Feng Y Y. 2022b. Fusion classification of HSI and MSI using a spatial-spectral vision transformer for wetland biodiversity estimation. Remote Sensing, 14(4): 850 [DOI: 10.3390/rs14040850http://dx.doi.org/10.3390/rs14040850]
Gasela M, Kganyago M and De Jager G. 2022. Testing the utility of the resampled nSight-2 spectral configurations in discriminating wetland plant species using Random Forest classifier. Geocarto International, 37(26): 11830-11845 [DOI: 10.1080/10106049.2022.2060326http://dx.doi.org/10.1080/10106049.2022.2060326]
George R, Padalia H, Sinha S K and Kumar A S. 2018. Evaluation of the use of hyperspectral vegetation indices for estimating mangrove leaf area index in Middle Andaman Island, India. Remote Sensing Letters, 9(11): 1099-1108 [DOI: 10.1080/2150704x.2018.1508910http://dx.doi.org/10.1080/2150704x.2018.1508910]
Goswami S, Gamon J A and Tweedie C E. 2011. Surface hydrology of an arctic ecosystem: Multiscale analysis of a flooding and draining experiment using spectral reflectance. Journal of Geophysical Research: Biogeosciences, 116(G4): G00I07 [DOI: 10.1029/2010JG001346http://dx.doi.org/10.1029/2010JG001346]
Granlund L, Keinänen M and Tahvanainen T. 2021. Identification of peat type and humification by laboratory VNIR/SWIR hyperspectral imaging of peat profiles with focus on fen-bog transition in AAPA mires. Plant and Soil, 460(1/2): 667-686 [DOI: 10.1007/s11104-020-04775-yhttp://dx.doi.org/10.1007/s11104-020-04775-y]
Guo X C, Luo L J, Chen W H and Zhang Y H. 2012. Hyper-spectral estimation models of the chlorophyll contents in the leaves of pinus elliottii based on continuum-removed method. Jilin Normal University Journal (Natural Science Edition), 33(4): 95-101
郭啸川, 罗丽娟, 陈文惠, 张永贺. 2012. 基于连续统去除法的湿地松叶绿素含量高光谱估算模型. 吉林师范大学学报(自然科学版), 33(4): 95-101 [DOI: 10.16862/j.cnki.issn1674-3873.2012.04.025http://dx.doi.org/10.16862/j.cnki.issn1674-3873.2012.04.025]
Hestir E L, Khanna S, Andrew M E, Santos M J, Viers J H, Greenberg J A, Rajapakse S S and Ustin S L. 2008. Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem. Remote Sensing of Environment, 112(11): 4034-4047 [DOI: 10.1016/j.rse.2008.01.022http://dx.doi.org/10.1016/j.rse.2008.01.022]
Hladik C, Schalles J and Alber M. 2013. Salt marsh elevation and habitat mapping using hyperspectral and LIDAR data. Remote Sensing of Environment, 139: 318-330 [DOI: 10.1016/j.rse.2013.08.003http://dx.doi.org/10.1016/j.rse.2013.08.003]
Hu Y B, Ren G B, Ma Y, Yang J F, Wang J B, An J B, Liang J, Ma Y Q and Song X K. 2022. Coastal wetland hyperspectral classification under the collaborative of subspace partition and infinite probabilistic latent graph ranking. Science China Technological Sciences, 65(4): 759-77 [DOI: 10.1007/s11431-021-1987-8http://dx.doi.org/10.1007/s11431-021-1987-8]
Hu Y B, Zhang J, Ma Y, An J B, Ren G B and Li X M. 2019a. Hyperspectral coastal wetland classification based on a multiobject convolutional neural network model and decision fusion. IEEE Geoscience and Remote Sensing Letters, 16(7): 1110-1114 [DOI: 10.1109/Lgrs.2018.2890421http://dx.doi.org/10.1109/Lgrs.2018.2890421]
Hu Y B, Zhang J, Ma Y, Li X M, Sun Q P and An J B. 2019b. Deep learning classification of coastal wetland hyperspectral image combined spectra and texture features: A case study of Huanghe (Yellow) River Estuary wetland. Acta Oceanologica Sinica, 38(5): 142-150 [DOI: 10.1007/s13131-019-1445-zhttp://dx.doi.org/10.1007/s13131-019-1445-z]
Huang K, Meng X Z, Yang G, Sun W W. 2022. Spatio-temporal probability threshold method of remote sensing for mangroves mapping in China. National Remote Sensing Bulletin, 26(6): 1083-1095
黄可, 孟祥珍, 杨刚, 孙伟伟. 2022. 中国红树林制图的遥感时空概率阈值方法. 遥感学报, 26(6): 1083-1095 [DOI:10.11834/jrs.20220449http://dx.doi.org/10.11834/jrs.20220449]
Ji X Q. 2008. A Study on Characteristics of Hydrodynamics and Sediment Transport, and Analysis of Vegetation Effects Chongming Dongtan, Yangtze Estuary. Shanghai: East China Normal University (吉晓强. 2008. 崇明东滩水沙输移及植被影响分析. 上海: 华东师范大学)
Jiang W G, Chen Q, Guo J, Tang H and Li X. 2010. Classification of wetlands in multispectral remote sensing image based on HPSO and FCM. Spectroscopy and Spectral Analysis, 30(12): 3329-3333
蒋卫国, 陈强, 郭骥, 唐宏, 李雪. 2010. 基于HPSO和FCM的多光谱遥感图像湿地分类. 光谱学与光谱分析, 30(12): 3329-3333 [DOI: 10.3964/j.issn.1000-0593(2010)12-3329-05http://dx.doi.org/10.3964/j.issn.1000-0593(2010)12-3329-05]
Jiang X P, Zhen J N, Miao J, Zhao D M, Shen Z, Jiang J C, Gao C J, Wu G F and Wang J J. 2022. Newly-developed three-band hyperspectral vegetation index for estimating leaf relative chlorophyll content of mangrove under different severities of pest and disease. Ecological Indicators, 140: 108978 [DOI: 10.1016/j.ecolind.2022.108978http://dx.doi.org/10.1016/j.ecolind.2022.108978]
Jiang X P, Zhen J N, Miao J, Zhao D M, Wang J J and Jia S. 2021a. Assessing mangrove leaf traits under different pest and disease severity with hyperspectral imaging spectroscopy. Ecological Indicators, 129: 107901 [DOI: 10.1016/j.ecolind.2021.107901http://dx.doi.org/10.1016/j.ecolind.2021.107901]
Jiang Y F, Zhang L, Yan M, Qi J G, Fu T M, Fan S X and Chen B W. 2021b. High-resolution mangrove forests classification with machine learning using worldview and UAV hyperspectral data. Remote Sensing, 13(8): 1529 [DOI: 10.3390/rs13081529http://dx.doi.org/10.3390/rs13081529]
Jiao L L, Sun W W, Yang G, Ren G B and Liu Y N. 2019. A hierarchical classification framework of satellite multispectral/hyperspectral images for mapping coastal wetlands. Remote Sensing, 11(19): 2238 [DOI: 10.3390/rs11192238http://dx.doi.org/10.3390/rs11192238]
Kamal M and Phinn S. 2011. Hyperspectral data for mangrove species mapping: a comparison of pixel-based and object-based approach. Remote Sensing, 3(10): 2222-2242 [DOI: 10.3390/rs3102222http://dx.doi.org/10.3390/rs3102222]
Khanna S, Santos M J, Boyer J D, Shapiro K D, Bellvert J and Ustin S L. 2018. Water primrose invasion changes successional pathways in an estuarine ecosystem. Ecosphere, 9(9): e02418 [DOI: 10.1002/ecs2.2418http://dx.doi.org/10.1002/ecs2.2418]
Koedsin W and Vaiphasa C. 2013. Discrimination of tropical mangroves at the species level with EO-1 hyperion data. Remote Sensing, 5(7): 3562-3582 [DOI: 10.3390/rs5073562http://dx.doi.org/10.3390/rs5073562]
Kopeć D, Sabat-Tomala A, Michalska-Hejduk D, Jarocińska A and Niedzielko J. 2020. Application of airborne hyperspectral data for mapping of invasive alien Spiraea tomentosa L.: a serious threat to peat bog plant communities. Wetlands Ecology and Management, 28(2): 357-373 [DOI: 10.1007/s11273-020-09719-yhttp://dx.doi.org/10.1007/s11273-020-09719-y]
Kuang R Y, Zeng S, Zhao Z and Xiao Y. 2017. Extraction of the discriminative bands of Lake Poyang wetland vegetation based on the measured hyperspectral data. Journal of Lake Sciences, 29(6): 1485-1490
况润元, 曾帅, 赵哲, 肖阳. 2017. 基于实测高光谱数据的鄱阳湖湿地植被光谱差异波段提取. 湖泊科学, 29(6): 1485-1490 [DOI: 10.18307/2017.0620http://dx.doi.org/10.18307/2017.0620]
Kumar T, Mandal A, Dutta D, Nagaraja R and Dadhwal V K. 2019. Discrimination and classification of mangrove forests using EO-1 Hyperion data: a case study of Indian Sundarbans. Geocarto International, 34(4): 415-442 [DOI: 10.1080/10106049.2017.1408699http://dx.doi.org/10.1080/10106049.2017.1408699]
LaBaw C. 1984. Airborne imaging spectrometer: an advanced concept instrument//Proceedings of SPIE 0430, Infrared Technology IX. San Diego: SPIE [DOI: 10.1117/12.936372http://dx.doi.org/10.1117/12.936372]
Leonard L A and Luther M E. 1995. Flow hydrodynamics in tidal marsh canopies. Limnology and Oceanography, 40(8): 1474-1484 [DOI: 10.4319/lo.1995.40.8.1474http://dx.doi.org/10.4319/lo.1995.40.8.1474]
Li J Z, Yang X S and Sun H. 2014. Analysis on the hyperspectral characteristics of indicative vegitations in the East Dongting Lake Wetland. Chinese Agricultural Science Bulletin, 30(16): 67-70
李金钊, 杨星仕, 孙华. 2014. 东洞庭湖湿地指示植被高光谱特征分析. 中国农学通报, 30(16): 67-70 [DOI: 10.11924/j.issn.1000-6850.2013-3231http://dx.doi.org/10.11924/j.issn.1000-6850.2013-3231]
Li L L, Zhang Y H, Xing L X, Zhai Y J and Dong L Y. 2013. Modeling of the water depth of longpaozi in ZhaLong Marsh on high spectral resolution data. Remote Sensing Technology and Application, 28(2): 212-216
李丽丽, 张艳红, 邢立新, 翟羽娟, 董连英. 2013. 扎龙湿地龙泡子水深的高光谱建模研究. 遥感技术与应用, 28(2): 212-216 [DOI: 10.11873/j.issn.1004-0323.2013.2.212http://dx.doi.org/10.11873/j.issn.1004-0323.2013.2.212]
Li M Z and Zhang P Y. 2015. Classification of wetland vegetation in hyperspectral remote sensing image based on SAM algorithm. Forest Engineering, 31(2): 8-13
李明泽, 张培赢. 2015. 基于SAM算法的遥感影像湿地植被分类. 森林工程, 31(2): 8-13 [DOI: 10.16270/j.cnki.slgc.2015.02.003http://dx.doi.org/10.16270/j.cnki.slgc.2015.02.003]
Li Q S, Wong F K K and Fung T. 2021. Mapping multi-layered mangroves from multispectral, hyperspectral, and LiDAR data. Remote Sensing of Environment, 258: 112403 [DOI: 10.1016/j.rse.2021.112403http://dx.doi.org/10.1016/j.rse.2021.112403]
Li W, Wang J J, Gao Y H, Zhang M M, Tao R and Zhang B. 2022. Graph-feature-enhanced selective assignment network for hyperspectral and multispectral data classification. IEEE Transactions on Geoscience and Remote Sensing, 60: 5526914 [DOI: 10.1109/TGRS.2022.3166252http://dx.doi.org/10.1109/TGRS.2022.3166252]
Liu C, Tao R, Li W, Zhang M M, Sun W W and Du Q. 2021. Joint classification of hyperspectral and multispectral images for mapping coastal wetlands. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 982-996 [DOI: 10.1109/Jstars.2020.3040305http://dx.doi.org/10.1109/Jstars.2020.3040305]
Liu C C, Hsu T W, Wen H L and Wang K H. 2019. Mapping pure mangrove patches in small corridors and sandbanks using airborne hyperspectral imagery. Remote Sensing, 11(5): 592 [DOI: 10.3390/rs11050592http://dx.doi.org/10.3390/rs11050592]
Liu X H, Sun Y and Wu Y. 2012. Reduction of hyperspectral dimensions and construction of discriminating models for identifying wetland plant species. Spectroscopy and Spectral Analysis, 32(02): 459-64
刘雪华,孙岩,吴燕,2012. 光谱信息降维及判别模型建立用于识别湿地植物物种。光谱学与光谱分析,32(02):459-64 [DOI: 10.3964/j.issn.1000-0593(2012)02-0459-06http://dx.doi.org/10.3964/j.issn.1000-0593(2012)02-0459-06]
Liu Y G, Yu Z X, Zhang C and Xu X J. 2019. The estimation model for phosphorus content of Zizania Cuciflora in Jianhu wetland based on hyperspectral technology. Journal of Southwest Forestry University, 39(1): 123-131
刘云根, 余哲修, 张超, 徐晓军. 2019. 基于高光谱技术剑湖湿地茭草磷含量估算模型研究. 西南林业大学学报, 39(1): 123-131 [DOI: 10.11929/j.swfu.201812026http://dx.doi.org/10.11929/j.swfu.201812026]
Lu L, Gong Z N, Liang Y N and Liang S. 2022. Retrieval of chlorophyll-a concentrations of class II water bodies of Inland Lakes and reservoirs based on ZY1-02D satellite hyperspectral data. Remote Sensing, 14(8): 1842 [DOI: 10.3390/rs14081842http://dx.doi.org/10.3390/rs14081842]
Lu X, Wang X J, Sun H, Yu Y, Wang Y Q, Yang J J and Zhang L. 2017. The estimation model of biomass of Suaeda Salsa in coastal wetland based on hyperspectral reflectance spectra. Transactions of Oceanology and Limnology, (2): 96-100
卢霞, 王晓静, 孙华, 俞阳, 王雨芹, 杨佳佳, 张聆. 2017. 海滨湿地碱蓬地上鲜生物量高光谱估算研究. 海洋湖沼通报, (2): 96-100 [DOI: 10.13984/j.cnki.cn37-1141.2017.02.013http://dx.doi.org/10.13984/j.cnki.cn37-1141.2017.02.013]
Lucas K L and Carter G A. 2010. Decadal changes in habitat-type coverage on Horn Island, Mississippi, U.S.A. Journal of Coastal Research, 26: 1142-1148 [DOI: 10.2112/jcoastres-d-09-00018.1http://dx.doi.org/10.2112/jcoastres-d-09-00018.1]
Luo S Z, Wang C, Xi X H, Pan F F, Qian M J, Peng D L, Nie S, Qin H M and Lin Y. 2017. Retrieving aboveground biomass of wetland Phragmites australis (common reed) using a combination of airborne discrete-return LiDAR and hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 58: 107-117 [DOI: 10.1016/j.jag.2017.01.016http://dx.doi.org/10.1016/j.jag.2017.01.016]
Manjunath K R, Kumar T, Kundu N and Panigrahy S. 2013. Discrimination of mangrove species and mudflat classes using in situ hyperspectral data: a case study of Indian Sundarbans. GIScience and Remote Sensing, 50(4): 400-417 [DOI: 10.1080/15481603.2013.814275http://dx.doi.org/10.1080/15481603.2013.814275]
McPartland M Y, Falkowski M J, Reinhardt J R, Kane E S, Kolka R, Turetsky M R, Douglas T A, Anderson J, Edwards J D, Palik B and Montgomery R A. 2019. Characterizing boreal peatland plant composition and species diversity with hyperspectral remote sensing. Remote Sensing, 11(14): 1685 [DOI: 10.3390/rs11141685http://dx.doi.org/10.3390/rs11141685]
Mei A X, Peng W X, Qin Q M and Liu H P. 2001. An Introduction to Remote Sensing. Beijing: Higher Education Press
梅安新, 彭望琭, 秦其明, 刘慧平. 2001. 遥感导论. 北京: 高等教育出版社
Meingast K M, Falkowski M J, Kane E S, Potvin L R, Benscoter B W, Smith A M S, Bourgeau-Chavez L L and Miller M E. 2014. Spectral detection of near-surface moisture content and water-table position in northern peatland ecosystems. Remote Sensing of Environment, 152: 536-546 [DOI: 10.1016/j.rse.2014.07.014http://dx.doi.org/10.1016/j.rse.2014.07.014]
Meng X C, Sun W W, Ren K, Yang G, Shao F, Fu R D. 2020. Spatial-spectral fusion of GF-5/GF-1 remote sensing images based on multiresolution analysis. Journal of Remote Sensing (Chinese). 24(4): 379-387
孟祥超, 孙伟伟, 任凯, 杨刚, 邵枫, 符冉迪. 2020. 基于多分辨率分析的GF-5和GF-1遥感影像空-谱融合. 遥感学报, 24(4): 379-387 [DOI: 10.11834/jrs.20209214http://dx.doi.org/10.11834/jrs.20209214]
Na X D, Li X M, Li W L and Wu C S. 2021. Wetland mapping using HJ-1A/B hyperspectral images and an adaptive sparse constrained least squares linear spectral mixture model. Remote Sensing, 13(4): 751 [DOI: 10.3390/rs13040751http://dx.doi.org/10.3390/rs13040751]
Neuenschwander A L, Crawford M M and Provancha M J. 1998. Mapping of coastal wetlands via hyperspectral AVIRIS data//IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174). Seattle: IEEE: 189-191.
Niu Z G, Zhang H Y, Wang X W, Yao W B, Zhou D M, Zhao K Y, Zhao H, Li N N, Huang H B, Li C C, Yang J, Liu C X, Liu S, Wang L, Li Z, Yang Z Z, Qiao F, Zheng Y M, Chen Y L, Sheng Y W, Gao X H, Zhu W H, Wang W Q, Wang H, Weng Y L, Zhuang D F, Liu J Y, Luo Z C, Cheng X, Guo Z Q and Gong P. 2012. Mapping wetland changes in China between 1978 and 2008. Chinese Science Bulletin, 57(22): 2813-2823 [DOI: 10.1007/s11434-012-5093-3http://dx.doi.org/10.1007/s11434-012-5093-3]
Ouyang Z T, Gao Y, Xie X, Guo H Q, Zhang T T and Zhao B. 2013. Spectral discrimination of the invasive plant Spartina alterniflora at multiple phenological stages in a saltmarsh wetland. PLoS One, 8(6): e67315. [DOI: 10.1371/journal.pone.0067315http://dx.doi.org/10.1371/journal.pone.0067315]
Pandey P C, Anand A and Srivastava P K. 2019. Spatial distribution of mangrove forest species and biomass assessment using field inventory and earth observation hyperspectral data. Biodiversity and Conservation, 28(8/9): 2143-2162 [DOI: 10.1007/s10531-019-01698-8http://dx.doi.org/10.1007/s10531-019-01698-8]
Papp L, Van Leeuwen B, Szilassi P, Tobak Z, Szatmári J, Árvai M, Mészáros J and Pásztor L. 2021. Monitoring invasive plant species using hyperspectral remote sensing data. Land, 10(1): 29 [DOI: 10.3390/land10010029http://dx.doi.org/10.3390/land10010029]
Pastor-Guzman J, Dash J and Atkinson P M. 2018. Remote sensing of mangrove forest phenology and its environmental drivers. Remote Sensing of Environment, 205: 71-84 [DOI: 10.1016/j.rse.2017.11.009http://dx.doi.org/10.1016/j.rse.2017.11.009]
Peng J T, Sun W W, Wei T H, Fan W Q. 2020. A modified correlation alignment algorithm for the domain adaptation of GF-5 hyperspectral image. Journal of Remote Sensing (Chinese). 24(4): 417-426
彭江涛, 孙伟伟, 魏天慧, 范文琦. 2020. 高分五号高光谱影像的关联对齐域适应与分类. 遥感学报, 24(4): 417-426 [DOI: 10.11834/jrs.20209212http://dx.doi.org/10.11834/jrs.20209212]
Pengra B W, Johnston C A and Loveland T R. 2007. Mapping an invasive plant, Phragmites australis, in coastal wetlands using the EO-1 Hyperion hyperspectral sensor. Remote Sensing of Environment, 108(1): 74-81 [DOI: 10.1016/j.rse.2006.11.002http://dx.doi.org/10.1016/j.rse.2006.11.002]
Ping W, Fu J, Qiao W Y, Yasir M, Hui S, Hossain M S and Nazir S. 2021. Decision support system for hyperspectral remote-sensing data of Yellow River estuary, China. Scientific Programming, 2021: 1376167 [DOI: 10.1155/2021/1376167http://dx.doi.org/10.1155/2021/1376167]
Proctor C and He Y H. 2013. Estimation of foliar pigment concentration in floating macrophytes using hyperspectral vegetation indices. International Journal of Remote Sensing, 34(22): 8011-8027 [DOI: 10.1080/01431161.2013.828183http://dx.doi.org/10.1080/01431161.2013.828183]
Prospere K, McLaren K and Wilson B. 2014. Plant species discrimination in a tropical wetland using in situ hyperspectral data. Remote Sensing, 6(9): 8494-8523 [DOI: 10.3390/rs6098494http://dx.doi.org/10.3390/rs6098494]
Qiu L, Lin H, Sun H, Zang Z and Mo D K. 2012. Studies on leaf area index estimation of Carex based on high-spectral data. Journal of Central South University of Forestry and Technology, 33(7): 28-33
邱琳, 林辉, 孙华, 臧卓, 莫登奎. 2012. 基于高光谱数据的东洞庭湖苔草LAI估算研究. 中南林业科技大学学报, 33(7): 28-33 [DOI: 10.14067/j.cnki.1673-923x.2012.07.001http://dx.doi.org/10.14067/j.cnki.1673-923x.2012.07.001]
Qiu L, Lin H, Zang Z, Sun H and Mo D K. 2013. Hyper-spectral characteristic band selection for wetland vegetation based on mean confidence interval. Journal of Central South University of Forestry and Technology, 33(1): 41-45
邱琳, 林辉, 臧卓, 孙华, 莫登奎. 2013. 基于均值置信区间带的湿地植被高光谱特征波段选择. 中南林业科技大学学报, 33(1): 41-45 [DOI: 10.14067/j.cnki.1673-923x.2013.01.023http://dx.doi.org/10.14067/j.cnki.1673-923x.2013.01.023]
Räsänen A, Juutinen S, Kalacska M, Aurela M, Heikkinen P, Mäenpää K, Rimali A and Virtanen T. 2020. Peatland leaf-area index and biomass estimation with ultra-high resolution remote sensing. GIScience and Remote Sensing, 57(7): 943-964 [DOI: 10.1080/15481603.2020.1829377http://dx.doi.org/10.1080/15481603.2020.1829377]
Ren G B, Zhang J and Ma Y. 2015. Suaeda-salsa and tamarisk fractional cover inversion models by HJ-1A hyperspectral remote sensing image in Yellow River Estuary. Acta Oceanologica Sinica, 37(9): 51-58
任广波, 张杰, 马毅. 2015. 基于HJ-1A高光谱的黄河口碱蓬和柽柳盖度反演模型研究. 海洋学报, 37(9): 51-58 [DOI: 10.3969/j.issn.0253-4193.2015.09.006http://dx.doi.org/10.3969/j.issn.0253-4193.2015.09.006]
Ren G B, Zhang J, Wang W Q, Geng Y J, Chen Y J and Ma Y. 2014a. Reeds and suaeda biomass estimation model based on HJ-1 hyperspectal image in the Yellow River Estuary. Journal of Marine Sciences, 32(4): 27-34
任广波, 张杰, 汪伟奇, 耿延杰, 陈妍君, 马毅. 2014a. 基于HJ-1高光谱影像的黄河口芦苇和碱蓬生物量估测模型研究. 海洋学研究, 32(4): 27-34 [DOI: 10.3969/j.issn.1001-909X.2014.04.004http://dx.doi.org/10.3969/j.issn.1001-909X.2014.04.004]
Ren G B, Zhang J, Wu P Q and Ma Y. 2014b. Hyperspectral detection method for vegetation affected by petroleum hydrocarbon seepage in the wetland of the Huanghe estuary. coastal engineering, 33(3): 26-35
任广波, 张杰, 吴培强, 马毅. 2014b. 黄河口受石油烃渗漏影响植被的高光谱检测方法研究. 海岸工程, 33(3): 26-35 [DOI: 10.3969/j.issn.1002-3682.2014.03.004http://dx.doi.org/10.3969/j.issn.1002-3682.2014.03.004]
Ren G B, Zhou L, Liang J, Lu F, Wang A D, Wang J B, Li X M and Ma Y. 2021. Monitoring the invasion of Spartina alterniflora using hyperspectral remote sensing image of GF-5. Advances in Marine Science, 39(2): 312-326
任广波, 周莉, 梁建, 路峰, 王安东, 王建步, 李晓敏, 马毅. 2021. “高分五号”高光谱互花米草遥感识别与制图研究. 海洋科学进展, 39(2): 312-326 [DOI: 10.3969/j.issn.1671-6647.2021.02.014http://dx.doi.org/10.3969/j.issn.1671-6647.2021.02.014]
Rong Y, Liu R Q, Li M Y, Wang Z, Liu Y N and Liu F. 2017. Estimation of wetland soil organic matter based on spaceborne hyperspectral image in Xinjizhou of Nanjing. Journal of Southwest Forestry University, 37(6): 171-177
荣媛, 刘任棋, 李明阳, 王子, 刘雅楠, 刘菲. 2017. 基于星载高光谱数据的南京新济洲湿地土壤有机质估测研究. 西南林业大学学报, 37(6): 171-177 [DOI: 10.11929/j.issn.2095-1914.2017.06.027http://dx.doi.org/10.11929/j.issn.2095-1914.2017.06.027]
Rupasinghe P A, Milas A S, Arend K, Simonson M A, Mayer C and Mackey S. 2019. Classification of shoreline vegetation in the Western Basin of Lake Erie using airborne hyperspectral imager HSI2, Pleiades and UAV data. International Journal of Remote Sensing, 40(8): 3008-3028 [DOI: 10.1080/01431161.2018.1539267http://dx.doi.org/10.1080/01431161.2018.1539267]
Saluja R and Garg J K. 2016. Characterization and modeling of bio-optical properties of water in a lentic ecosystem using in-situ hyperspectral remote sensing//Proceedings of SPIE 9878, Remote Sensing of the Oceans and Inland Waters: Techniques, Applications, and Challenges. New Delhi: SPIE [DOI: 10.1117/12.2223870http://dx.doi.org/10.1117/12.2223870]
Saluja R, Prasad S and Garg J K. 2018. Field spectroradiometry for discrimination of wetland components: a case study of a tropical inland wetland in India. Wetlands Ecology and Management, 26(5): 915-930 [DOI: 10.1007/s11273-018-9620-0http://dx.doi.org/10.1007/s11273-018-9620-0]
Shao H, Wang J Y and Xue Y Q. 1998. Key technology of pushbroom hyperspectral imager (PHI). Journal of Remote Sensing, 2(4): 251-254
邵晖, 王建宇, 薛永祺. 1998. 推帚式超光谱成像仪(PHI)关键技术. 遥感学报, 2(4): 251-254 [DOI: 10.11834/jrs.19980403http://dx.doi.org/10.11834/jrs.19980403]
Sharma B, Rasul G and Chettri N. 2015. The economic value of wetland ecosystem services: evidence from the Koshi Tappu Wildlife Reserve, Nepal. Ecosystem Services, 12: 84-93 [DOI: 10.1016/j.ecoser.2015.02.007http://dx.doi.org/10.1016/j.ecoser.2015.02.007]
Shive J P, Pilliod D S and Peterson C R. 2010. Hyperspectral analysis of Columbia spotted frog habitat. Journal of Wildlife Management, 74(6): 1387-1394 [DOI: 10.2193/2008-534http://dx.doi.org/10.2193/2008-534]
Stratoulias D, Balzter H, Zlinszky A and Tóth V R. 2018. A comparison of airborne hyperspectral-based classifications of emergent wetland vegetation at Lake Balaton, Hungary. International Journal of Remote Sensing, 39(17): 5689-5715 [DOI: 10.1080/01431161.2018.1466081http://dx.doi.org/10.1080/01431161.2018.1466081]
Su H J, Yao W J, Wu Z Y, Zheng P and Du Q. 2021. Kernel low-rank representation with elastic net for China coastal wetland land cover classification using GF-5 hyperspectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 171: 238-252 [DOI: 10.1016/j.isprsjprs.2020.11.018http://dx.doi.org/10.1016/j.isprsjprs.2020.11.018]
Sun Q P, Ma Y and Zhang J. 2017. Evaluation of the classification accuracy of coastal wetland hyperspectral image reconstructed from sparse sampling. Journal of Ocean Technology, 36(2): 77-82
孙钦佩, 马毅, 张杰. 2017. 滨海湿地稀疏采样重构高光谱图像分类精度评价. 海洋技术学报, 36(2): 77-82 [DOI: 10.3969/j.issn.1003-2029.2017.02.013http://dx.doi.org/10.3969/j.issn.1003-2029.2017.02.013]
Sun W W, Liu K, Ren G B, Liu W W, Yang G, Meng X C and Peng J T. 2021. A simple and effective spectral-spatial method for mapping large-scale coastal wetlands using China ZY1-02D satellite hyperspectral images. International Journal of Applied Earth Observation and Geoinformation, 104: 102572 [DOI: 10.1016/j.jag.2021.102572http://dx.doi.org/10.1016/j.jag.2021.102572]
Sun W W and Du Q. 2019. Hyperspectral band selection: a review. IEEE Geoscience and Remote Sensing Magazine, 7(2): 118-139 [DOI: 10.1109/MGRS.2019.2911100http://dx.doi.org/10.1109/MGRS.2019.2911100]
Sun Y Z, Jiang G W, Li Y D, Yang Y, Dai H S, He J, Ye Q H, Cao Q, Dong C Z, Zhao S H and Wang W H. 2018. GF-5 satellite: overview and application prospects. Spacecraft Recovery and Remote Sensing, 39(3): 1-13
孙允珠, 蒋光伟, 李云端, 杨勇, 代海山, 何军, 叶擎昊, 曹琼, 董长哲, 赵少华, 王维和. 2018. “高分五号”卫星概况及应用前景展望. 航天返回与遥感, 39(3): 1-13 [DOI: 10.3969/j.issn.1009-8518.2018.03.001http://dx.doi.org/10.3969/j.issn.1009-8518.2018.03.001]
Tao T, Ruan R Z, Sui X Z, Wang Y Q and Lin P. 2017. Extraction of floating-leaved vegetation information based on HyMap data. Remote Sensing for Land and Resources, 29(2): 187-192
陶婷, 阮仁宗, 岁秀珍, 王玉强, 林鹏. 2017. 基于HyMap数据的浮水植被信息提取. 国土资源遥感, 29(2): 187-192 [DOI: 10.6046/gtzyyg.2017.02.27http://dx.doi.org/10.6046/gtzyyg.2017.02.27]
Tian Y Q, Lu X, Zhang S, Li Y R, Dong H P, Lin Y L and Wen R. 2020. Hyperspectral recognition of chorophyll content of Suaeda salsa under salt stress in coastal wetland. Transactions of Oceanology and Limnology, (1): 151-160
田燕芹, 卢霞, 张森, 李昱蓉, 董洪鹏, 林雅丽, 温瑞. 2020. 盐胁迫下滨海湿地碱蓬叶绿素含量的高光谱识别. 海洋湖沼通报, (1): 151-160 [DOI: 10.13984/j.cnki.cn37-1141.2020.01.020http://dx.doi.org/10.13984/j.cnki.cn37-1141.2020.01.020]
Tong Q X, Zhang B and Zhang L F. 2016. Current progress of hyperspectral remote sensing in China. Journal of Remote Sensing, 20(5): 689-707
童庆禧, 张兵, 张立福. 2016. 中国高光谱遥感的前沿进展. 遥感学报, 20(5): 689-707 [DOI: 10.11834/jrs.20166264http://dx.doi.org/10.11834/jrs.20166264]
Wan L M, Lin Y Y, Zhang H S, Wang F, Liu M F and Lin H. 2020. GF-5 hyperspectral data for species mapping of mangrove in Mai Po, Hong Kong. Remote Sensing, 12(4): 656 [DOI: 10.3390/rs12040656http://dx.doi.org/10.3390/rs12040656]
Wang C, Menenti M, Stoll M P, Belluco E and Marani M. 2007. Mapping mixed vegetation communities in salt marshes using airborne spectral data. Remote Sensing of Environment, 107(4): 559-570 [DOI: 10.1016/j.rse.2006.10.007http://dx.doi.org/10.1016/j.rse.2006.10.007]
Wang J B, Zhang J, Ma Y and Ren G B. 2014. Classification method of hyperspectral image in typical surface feature of Huanghe River estuary wetland. Journal of Marine Sciences, 32(3): 36-41
王建步, 张杰, 马毅, 任广波. 2014. 黄河口湿地典型地物类型高光谱分类方法. 海洋学研究, 32(3): 36-41 [DOI: 10.3969/j.issn.1001-909X.2014.03.005http://dx.doi.org/10.3969/j.issn.1001-909X.2014.03.005]
Wang J B, Zhang J, Wu P Q and Ma Y. 2015. Separating capacity evaluation of Yellow River estuary mudflat and Yellow River water in hyperspectral image. Remote Sensing Information, 30(4): 81-84
王建步, 张杰, 吴培强, 马毅. 2015. 高光谱影像黄河口裸滩与黄河水区分能力评价. 遥感信息, 30(4): 81-84 [DOI: 10.3969/j.issn.1000-3177.2015.04.014http://dx.doi.org/10.3969/j.issn.1000-3177.2015.04.014]
Wang L W and Wei Y X. 2016. Estimating the total nitrogen and total phosphorus content of wetland soils using hyperspectral models. Acta Ecologica Sinica, 36(16): 5116-5125
王莉雯, 卫亚星. 2016. 湿地土壤全氮和全磷含量高光谱模型研究. 生态学报, 36(16): 5116-5125 [DOI: 10.5846/stxb201501230186http://dx.doi.org/10.5846/stxb201501230186]
Wang S Y, Li S D, Zheng S Y, Gao W L, Zhang Y, Cao B, Cui B S and Shao D D. 2022. Estimating biomass and carbon sequestration capacity of Phragmites australis using remote sensing and growth dynamics modeling: a case study in Beijing Hanshiqiao Wetland Nature Reserve, China. Sensors, 22(9): 3141 [DOI: 10.3390/S22093141http://dx.doi.org/10.3390/S22093141]
Wang X P, Zhang F, Kung H T and Johnson V C. 2018. New methods for improving the remote sensing estimation of soil organic matter content (SOMC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR) in northwest China. Remote Sensing of Environment, 218: 104-118 [DOI: 10.1016/j.rse.2018.09.020http://dx.doi.org/10.1016/j.rse.2018.09.020]
Wei W, Li Z Y, Tan B X and Xu H S. 2011. Study on remote sensing classification method of Long Baotan wetland based on CHRIS/PROBA. Forest Research, 24(2): 159-164
韦玮, 李增元, 谭炳香, 徐海生. 2011. 基于多角度高光谱CHRIS影像的隆宝滩湿地遥感分类方法研究. 林业科学研究, 24(2): 159-164 [DOI: 10.13275/j.cnki.lykxyj.2011.02.002http://dx.doi.org/10.13275/j.cnki.lykxyj.2011.02.002]
Wu P Q, Zhang J, Ma Y and Ren G B. 2015. A CHRIS hyperspectral band selection method based on spectral separability and classification application. Marine Science, 39(2): 20-24
吴培强, 张杰, 马毅, 任广波. 2015. 基于地物光谱可分性的CHRIS高光谱影像波段选择及其分类应用. 海洋科学, 39(2): 20-24 [DOI: 10.11759/hykx20141011007http://dx.doi.org/10.11759/hykx20141011007]
Xie Z J, Hu J W, Kang X D, Duan P H and Li S T. 2022. Multilayer global spectral-spatial attention network for wetland hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 60: 5518913 [DOI: 10.1109/TGRS.2021.3133454http://dx.doi.org/10.1109/TGRS.2021.3133454]
Xu Y, Wang J J, Xia A Q, Zhang K Y, Dong X Y, Wu K P and Wu G F. 2019. Continuous wavelet analysis of leaf reflectance improves classification accuracy of mangrove species. Remote Sensing, 11(3): 254 [DOI: 10.3390/rs11030254http://dx.doi.org/10.3390/rs11030254]
Xu Y, Zhen J N, Jiang X P and Wang J J. 2021. Mangrove species classification with UAV-based remote sensing data and XGBoost. National Remote Sensing Bulletin, 25(3): 737-752
徐逸, 甄佳宁, 蒋侠朋, 王俊杰. 2021. 无人机遥感与XGBoost的红树林物种分类. 遥感学报, 25(3): 737-752 [DOI: 10.11834/jrs.20210281http://dx.doi.org/10.11834/jrs.20210281]
Xue Z H and Qian S Y. 2022. Fusion of Landsat 8 and Sentinel-2 data for mangrove phenology information extraction and classification. National Remote Sensing Bulletin, 26(6): 1121-1142
薛朝辉, 钱思羽. 2022. 融合Landsat 8与Sentinel-2数据的红树林物候信息提取与分类. 遥感学报, 26(6):1121-1142 [DOI:10.11834/jrs.20221448http://dx.doi.org/10.11834/jrs.20221448]
Yuan Y, Li L Y, Xiong W E, Chang N H and Xiang L B. 2009. Mechanical structure design for hyperspectral imager of HJ-lA satellite. Spacecraft Engineering, 18(6): 97-105
袁艳, 李立英, 熊望娥, 常宁华, 相里斌. 2009. 环境减灾-1A卫星超光谱成像仪结构设计. 航天器工程, 18(6): 97-105 [DOI: 10.3969/j.issn.1673-8748.2009. 06.017http://dx.doi.org/10.3969/j.issn.1673-8748.2009.06.017]
Yuan Z Q, Cao C X, Bao D M, Chen W, Tian R, E G and Li H. 2016. Inversion on contents of heavy metals in soils of wetlands in Zoigê Plateau based on remote sensing data. Wetland Science, 14(1): 113-116
袁中强, 曹春香, 鲍达明, 陈伟, 田蓉, 俄尕, 李华. 2016. 若尔盖湿地土壤重金属元素含量的遥感反演. 湿地科学, 14(1): 113-116 [DOI: 10.13248/j.cnki.wetlandsci.2016.01.018http://dx.doi.org/10.13248/j.cnki.wetlandsci.2016.01.018]
Zhang B. 2017. Current status and future prospects of remote sensing. Bulletin of Chinese Academy of Sciences, 32(7): 774-784
张兵. 2017. 当代遥感科技发展的现状与未来展望. 中国科学院院刊, 32(7): 774-784 [DOI: 10.16418/j.issn.1000-3045.2017.07.012http://dx.doi.org/10.16418/j.issn.1000-3045.2017.07.012]
Zhang C Y. 2014. Combining hyperspectral and Lidar data for vegetation mapping in the Florida Everglades. Photogrammetric Engineering and Remote Sensing, 80(8): 733-743 [DOI: 10.14358/pers.80.8.733http://dx.doi.org/10.14358/pers.80.8.733]
Zhang C Y and Xie Z X. 2013. Object-based vegetation mapping in the Kissimmee River Watershed using HyMap data and machine learning techniques. Wetlands, 33(2): 233-244 [DOI: 10.1007/s13157-012-0373-xhttp://dx.doi.org/10.1007/s13157-012-0373-x]
Zhang H Y, Han B, Wang X H, An M and Lei Y. 2020. System design and technique characteristic of ZY-1-02D Satellite. Spacecraft Engineering, 29(6): 10-18
张宏宇, 韩波, 王啸虎, 安萌, 雷勇. 2020. 资源一号02D卫星总体设计与技术特点. 航天器工程, 29(6): 10-18 [DOI: 10.3969/j.issn.1673-8748.2020.06.002http://dx.doi.org/10.3969/j.issn.1673-8748.2020.06.002]
Zhang S, Lu X, Nie G G, Li Y R, Shao Y T, Tian Y Q, Fang L Q and Zhang Y J. 2020. Estimation of soil organic matter in coastal wetlands by SVM and BP Based on hyperspectral remote sensing. Spectroscopy and Spectral Analysis, 40(2): 556-561
张森, 卢霞, 聂格格, 李昱蓉, 邵亚婷, 田燕芹, 范礼强, 张钰娟. 2020. SVM和BP检测滨海湿地土壤有机质. 光谱学与光谱分析, 40(2): 556-561 [DOI: 10.3964/j.issn.1000-0593(2020)02-0556-06http://dx.doi.org/10.3964/j.issn.1000-0593(2020)02-0556-06]
Zhang W L, Zeng C S, Gao D Z, Hu W F, Chen X Y and Lin W. 2014. Estimating the chlorophyll content of Kandelia candel based on hyper-spectral remote sensing in the Min River Estuarine wetland. Acta Ecologica Sinica, 34(21): 6190-6197
章文龙, 曾从盛, 高灯州, 胡伟芳, 陈晓艳, 林伟. 2014. 闽江河口湿地秋茄叶绿素含量高光谱遥感估算. 生态学报, 34(21): 6190-6197 [DOI: 10.5846/stxb201309262374http://dx.doi.org/10.5846/stxb201309262374]
Zhang Z J, Li A N, Bian J H, Zhao W, Nan X, Jin H A, Tan J B, Lei G B, Xia H M, Yang Y S and Sun M J. 2016. Estimating aboveground biomass of grassland in Zoige by visible vegetation index derived from unmanned aerial vehicle image. Remote Sensing Technology and Application, 31(1): 51-62
张正健, 李爱农, 边金虎, 赵伟, 南希, 靳华安, 谭剑波, 雷光斌, 夏浩铭, 杨勇帅, 孙明江. 2016. 基于无人机影像可见光植被指数的若尔盖草地地上生物量估算研究. 遥感技术与应用, 31(1): 51-62 [DOI: 10.11873/j.issn.1004-0323.2016.1.0051http://dx.doi.org/10.11873/j.issn.1004-0323.2016.1.0051]
Zhao C H, Wang L G and Qi B. 2016. Hyperspectral Remote Sensing Images Processing Methods and Applications. Beijing: Publishing House of Electronics Industry
赵春晖, 王立国, 齐滨. 2016. 高光谱遥感图像处理方法及应用. 北京: 电子工业出版社
Zhou Z M, Chen B Q, Xu R and Fang W. 2021. Identification of the mangrove species using UAV hyperspectral images: a case study of Zhangjiangkou mangrove national nature reserve. Acta Oceanologica Sinica, 43(9): 137-145
周在明, 陈本清, 徐冉, 方维. 2021. 基于无人机高光谱特征的红树林种群识别研究——以漳江口红树林国家级自然保护区为例. 海洋学报, 43(9): 137-145 [DOI: 10.12284/hyxb2021136http://dx.doi.org/10.12284/hyxb2021136]
Zhuo W, Wu N, Shi R H and Wang Z. 2022. UAV mapping of the chlorophyll content in a Tidal Flat Wetland using a combination of spectral and frequency indices. Remote Sensing, 14(4): 827 [DOI: 10.3390/rs14040827http://dx.doi.org/10.3390/rs14040827]
相关作者
相关机构