珠海一号高光谱场景分类数据集
Hyperspectral scene classification dataset based on Zhuhai-1 images
- 2024年28卷第1期 页码:306-319
纸质出版日期: 2024-01-07
DOI: 10.11834/jrs.20233283
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2024-01-07 ,
扫 描 看 全 文
刘渊,郑向涛,卢孝强.2024.珠海一号高光谱场景分类数据集.遥感学报,28(1): 306-319
Liu Y,Zheng X T and Lu X Q. 2024. Hyperspectral scene classification dataset based on Zhuhai-1 images. National Remote Sensing Bulletin, 28(1):306-319
高空间分辨率、高光谱分辨率、大幅宽与大数据量是高光谱卫星数据发展趋势,传统高光谱影像的像素级分类面临难以处理海量数据、无法高效获取复杂海量影像中隐含信息的困境。已有研究开始关注高光谱影像的场景级分类,并逐步建立完善高光谱遥感场景分类数据集。然而,目前的数据集制作过程多参考高空间分辨率可见光遥感场景数据集的制作方法,主要采用遥感影像的空间信息进行场景类别解译,忽视了高光谱场景的光谱信息。因此,为构建高光谱影像的遥感场景分类数据集,本文利用“珠海一号”高光谱卫星拍摄的西安地区高光谱数据,使用无监督光谱聚类辅助定位、裁剪与标注待选场景样本,结合Google Earth高分影像进行目视筛选,构建6类场景类型和737幅场景样本的珠海一号高光谱场景分类数据集。并基于光谱与空间两个视角开展场景分类实验,通过视觉词袋、卷积神经网络等方法的基准测试结果,对不同算法在现有多光谱和高光谱遥感场景分类数据集下的性能进行深入分析。本研究可为后续的高光谱影像解译研究提供了有力的数据支撑。
Hyperspectral remote sensing is a key technology for remotely obtaining the physical parameters of ground objects and realizing fine identification. It can not only get geometrical properties of the target scenes but also obtain radiance that reflects the characteristics of ground objects. With the development of hyperspectral remote sensing data to unprecedented spatial
spectral
temporal resolution and large data volume
how to adapt to the requirements of massive data and achieve efficient and rapid processing of hyperspectral remote sensing data has become the current research focus. Researchers are introducing scene classification into hyperspectral image classification
integrating the spatial and spectral information to obtain semantic information oriented to larger observation units. However
almost all existing multispectral/hyperspectral scene classification datasets have a number of limitations
including inconsistent spectral and spatial resolutions or spatial resolutions too large to meet the needs of fine-grained classification. Based on the hyperspectral images of Xi’an taken by the “Zhuhai-1” constellation
we combine the result of unsupervised spectral clustering and Google Earth to establish a hyperspectral satellite image scene classification dataset named HSCD-ZH (Hyperspectral Scene Classification Dataset from Zhuhai-1). It consists of 737 images divided into six categories: urban
agriculture
rural
forest
water
and unused land. Each image with a size of
<math id="M1"><mn mathvariant="normal">64</mn><mo>×</mo><mn mathvariant="normal">64</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=54409759&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=54409757&type=
8.63599968
2.11666679
pixels consists of 32 bands covering the wavelength in the range of 400—1000 nm. In addition
we conduct spatial-based and spectral-based experiments to analyze the performance of existing datasets
and the benchmark results are reported as a valuable baseline for subsequent research. We choose false-color image for the spatial-based experiments and then use popular deep and non-deep learning scene classification techniques. In the experiments based on spectral
the spectral vectors at the pixel are directly used as local spectral features
and BoVW
IFK
and LLC are used to encode them to generate global representations for the scene. Using SVM as the classifier
the optimal overall classification achieved by the two experiments on the proposed dataset is 92.34% and 88.96%
respectively. Considering that those methods have a large amount of information loss
we cascade the features extracted by the two approaches to generate spatial-spectral features. The highest overall accuracy obtained reaches 94.64%
which is the highest improvement in overall accuracy compared to the other datasets. We construct HSCD-ZH by effectively exploiting both spectral and spatial features of hyperspectral images
selecting various scenes that either have representative spectral compositions
clear spatial textures
or both. It has the advantages of big intraclass diversity
strong scalability
and adapting to satellite hyperspectral intelligent information extraction requirements. Both dataset and experiments can provide effective data support for remote sensing scene classification research in the hyperspectral field. Meanwhile
experiments can indicate that extracting features based on spatial or spectral misses a large amount of available information
and integrating the features extracted by the two methods can compensate for this deficiency. In our future work
we aim to expand the number of categories and images of HSCD-ZH and continue to explore algorithms for integrating spatial and spectral information that can accelerate the interpretation and efficient exploitation of hyperspectral scene cubes.
高光谱遥感珠海一号场景分类数据集特征提取
hyperspectral remote sensingZhuhai-1scene classificationdatasetfeature extraction
Benediktsson J A, Palmason J A and Sveinsson J R. 2005. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Transactions on Geoscience and Remote Sensing, 43(3): 480-491 [DOI: 10.1109/TGRS.2004.842478http://dx.doi.org/10.1109/TGRS.2004.842478]
Chen R, Pu D, Tong Y and Wu M H. 2022. Image-denoising algorithm based on improved K-singular value decomposition and atom optimization. CAAI Transactions on Intelligence Technology, 7(1): 117-127 [DOI 10.1049/cit2.12044http://dx.doi.org/10.1049/cit2.12044]
Du P J, Xia J S, Xue Z H, Tan K, Su H J and Bao R. 2016. Review of hyperspectral remote sensing image classification. Journal of Remote Sensing, 20(2): 236-256
杜培军, 夏俊士, 薛朝辉, 谭琨, 苏红军, 鲍蕊. 2016. 高光谱遥感影像分类研究进展. 遥感学报, 20(2): 236-256 [DOI: 10.11834/jrs.20165022http://dx.doi.org/10.11834/jrs.20165022]
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE: 770-778 [DOI: 10.1109/CVPR.2016.90http://dx.doi.org/10.1109/CVPR.2016.90]
Helber P, Bischke B, Dengel A and Borth D. 2019. EuroSAT: a novel dataset and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7): 2217-2226 [DOI: 10.1109/JSTARS.2019.2918242http://dx.doi.org/10.1109/JSTARS.2019.2918242]
Kang X D, Li S T and Benediktsson J A. 2014. Spectral-spatial hyperspectral image classification with edge-preserving filtering. IEEE Transactions on Geoscience and Remote Sensing, 52(5): 2666-2677 [DOI: 10.1109/TGRS.2013.2264508http://dx.doi.org/10.1109/TGRS.2013.2264508]
Kuras A, Brell M, Rizzi J and Burud I. 2021. Hyperspectral and lidar data applied to the urban land cover machine learning and neural-network-based classification: a review. Remote Sensing, 13(17): 3393 [DOI: 10.3390/rs13173393http://dx.doi.org/10.3390/rs13173393]
Li D R, Zhang L P and Xia G S. 2014. Automatic analysis and mining of remote sensing big data. Acta Geodaetica et Cartographica Sinica, 43(12): 1211-1216
李德仁, 张良培, 夏桂松. 2014. 遥感大数据自动分析与数据挖掘. 测绘学报, 43(12): 1211-1216 [DOI: 10.13485/j.cnki.11-2089.2014.0187http://dx.doi.org/10.13485/j.cnki.11-2089.2014.0187]
Li S T, Song W W, Fang L Y, Chen Y S, Ghamisi P and Benediktsson J A. 2019. Deep learning for hyperspectral image classification: an overview. IEEE Transactions on Geoscience and Remote Sensing, 57(9): 6690-6709 [DOI 10.1109/TGRS.2019.2907932http://dx.doi.org/10.1109/TGRS.2019.2907932]
Liu H, Li W, Xia X G, Zhang M M, Gao C Z and Tao R. 2022a. Central attention network for hyperspectral imagery classification. IEEE Transactions on Neural Networks and Learning Systems, 34(11): 8989-9003 [DOI: 10.1109/TNNLS.2022.3155114http://dx.doi.org/10.1109/TNNLS.2022.3155114]
Liu H, Qu Y and Zhang L Q. 2022b. Multispectral scene classification via cross-modal knowledge distillation. IEEE Transactions on Geoscience and Remote Sensing, 60: 1-12 [DOI: 10.1109/TGRS.2022.3174352http://dx.doi.org/10.1109/TGRS.2022.3174352]
Liu K, Zhou Z, Li S Y, Liu Y F, Wan X, Liu Z W, Tan H and Zhang W F. 2020. Scene classification dataset using the Tiangong-1 hyperspectral remote sensing imagery and its applications. Journal of Remote Sensing, 24(9): 1077-1087
刘康, 周壮, 李盛阳, 刘云飞, 万雪, 刘志文, 谭洪, 张万峰. 2020. 天宫一号高光谱遥感场景分类数据集及应用. 遥感学报, 24(9): 1077-1087 [DOI: 10.11834/jrs.20209323http://dx.doi.org/10.11834/jrs.20209323]
Liu Y N. 2021. Development of hyperspectral imaging remote sensing technology. National Remote Sensing Bulletin, 25(1): 439-459
刘银年. 2021. 高光谱成像遥感载荷技术的现状与发展. 遥感学报, 25(1): 439-459 [DOI: 10.11834/jrs.20210283http://dx.doi.org/10.11834/jrs.20210283]
Liu Z, Lin Y T, Cao Y, Hu H, Wei Y X, Zhang Z, Lin S and Guo B N. 2021. Swin transformer: hierarchical vision transformer using shifted windows//Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE: 10012-10022 [DOI: 10.1109/ICCV48922.2021.00986http://dx.doi.org/10.1109/ICCV48922.2021.00986]
Lowe D G. 2004. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2): 91-110 [DOI: 10.1023/B:VISI.0000029664.99615.94http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94]
Ojala T, Pietikainen M and Maenpaa T. 2002. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7): 971-987 [DOI: 10.1109/TPAMI.2002.1017623http://dx.doi.org/10.1109/TPAMI.2002.1017623]
Perronnin F, Sánchez J and Mensink T. 2010. Improving the fisher kernel for large-scale image classification//Proceedings of the 11th European Conference on Computer Vision. Heraklion: Springer: 143-156 [DOI: 10.1007/978-3-642-15561-1_11http://dx.doi.org/10.1007/978-3-642-15561-1_11]
Simonyan K and Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv: 1409.1556 [DOI: 10.48550/arXiv.1409.1556http://dx.doi.org/10.48550/arXiv.1409.1556]
Sivic J and Zisserman A. 2003. Video Google: a text retrieval approach to object matching in videos//Proceedings of the 9th IEEE International Conference on Computer Vision. Nice: IEEE: 1470-1470 [DOI: 10.1109/ICCV.2003.1238663http://dx.doi.org/10.1109/ICCV.2003.1238663]
Swain M J and Ballard D H. 1991. Color indexing. International Journal of Computer Vision, 7(1): 11-32 [DOI: 10.1007/BF00130487http://dx.doi.org/10.1007/BF00130487]
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł and Polosukhin I. 2017. Attention is all you need// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc. [DOI: 10.48550/arXiv.1706.03762http://dx.doi.org/10.48550/arXiv.1706.03762]
Wang J J, Yang J C, Yu K, Lv F J, Huang T and Gong Y H. 2010. Locality-constrained linear coding for image classification//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE: 3360-3367 [DOI: 10.1109/CVPR.2010.5540018http://dx.doi.org/10.1109/CVPR.2010.5540018]
Xia G S, Hu J W, Hu F, Shi B G, Bai X, Zhong Y F, Zhang L P and Lu X Q. 2017. AID: a benchmark data set for performance evaluation of aerial scene classification. IEEE Transactions on Geoscience and Remote Sensing, 55(7): 3965-3981 [DOI: 10.1109/TGRS.2017.2685945http://dx.doi.org/10.1109/TGRS.2017.2685945]
Xu K J, Deng P F and Huang H. 2021. HSRS-SC: a hyperspectral image dataset for remote sensing scene classification. Journal of Image and Graphics, 26(8): 1809-1822
徐科杰, 邓培芳, 黄鸿. 2021. HSRS-SC: 面向遥感场景分类的高光谱图像数据集. 中国图象图形学报, 26(8): 1809-1822 [DOI: 10.11834/jig.200835http://dx.doi.org/10.11834/jig.200835]
Yang X F, Cao W J, Lu Y and Zhou Y C. 2022. Hyperspectral image transformer classification networks. IEEE Transactions on Geoscience and Remote Sensing, 60: 1-15 [DOI: 10.1109/TGRS.2022.3171551http://dx.doi.org/10.1109/TGRS.2022.3171551]
Yang Y and Newsam S. 2010. Bag-of-visual-words and spatial extensions for land-use classification//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. San Jose: ACM: 270-279 [DOI: 10.1145/1869790.1869829http://dx.doi.org/10.1145/1869790.1869829]
Zhang C Y, Li J, Lei S G, Yang J Z and Yang N. 2022. Progress and prospect of the quantitative remote sensing for monitoring the eco-environment in mining area. Metal Mine, (3): 1-27
张成业, 李军, 雷少刚, 杨金中, 杨楠. 2022. 矿区生态环境定量遥感监测研究进展与展望. 金属矿山, (3): 1-27 [DOI: 10.19614/j.cnki.jsks.202203001http://dx.doi.org/10.19614/j.cnki.jsks.202203001]
Zhang J X, Gu H Y, Yang Y, Zhang H and Li H T. 2021. Research progress and trend of high-resolution remote sensing imagery intelligent interpretation. National Remote Sensing Bulletin, 25(11): 2198-2210
张继贤, 顾海燕, 杨懿, 张鹤, 李海涛. 2021. 高分辨率遥感影像智能解译研究进展与趋势. 遥感学报, 25(11): 2198-2210 [DOI: 10.11834/jrs.20210382http://dx.doi.org/10.11834/jrs.20210382]
Zhong L, Qian J W, Chu X Y, Qian Z H, Wang M and Li J L. 2023. Monitoring heavy metal contamination of wheat soil using hyperspectral remote sensing technology. Transactions of the Chinese Society of Agricultural Engineering, 39(5): 265-270
钟亮, 钱家炜, 储学远, 钱志红, 王淼, 李建龙. 2023. 利用高光谱遥感技术监测小麦土壤重金属污染. 农业工程学报, 39(5): 265-270 [DOI: 10.11975/j.issn.1002-6819.202207160http://dx.doi.org/10.11975/j.issn.1002-6819.202207160]
Zhou Z, Li S Y, Wu W, Guo W L, Li X, Xia G S and Zhao Z F. 2021. NaSC-TG2: natural scene classification with tiangong-2 remotely sensed imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 3228-3242 [DOI 10.1109/JSTARS.2021.3063096http://dx.doi.org/10.1109/JSTARS.2021.3063096]
相关作者
相关机构