星载光学载荷历史数据再定标综述
Overview of historical data retrospective calibration for space-borne optical payloads
- 2023年27卷第10期 页码:2229-2251
纸质出版日期: 2023-10-07
DOI: 10.11834/jrs.20233359
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-10-07 ,
扫 描 看 全 文
胡秀清,王玲,张鹏,徐娜,漆成莉,徐寒列,何兴伟,何玉青,陈林,孙凌,卢乃锰.2023.星载光学载荷历史数据再定标综述.遥感学报,27(10): 2229-2251
Hu X Q,Wang L,Zhang P,Xu N,Qi C L,Xu H L,He X W,He Y Q,Chen L,Sun L and Lu N M. 2023. Overview of historical data retrospective calibration for space-borne optical payloads. National Remote Sensing Bulletin, 27(10):2229-2251
经过三十多年努力,中国气象、陆地、海洋、环境减灾星座等已经形成了系列化、业务化发展的态势,国产多系列遥感卫星积累了较长时间连续观测资料,这为气候变化研究和环境变化检测提供了可能性。要发挥卫星观测历史数据在气候变化研究中的巨大潜力,必须解决不同卫星之间、同一卫星全寿命期遥感载荷的高精度一致性辐射再定标问题,构建统一的历史辐射基准和精细再定标模型,使得不同仪器、不同时期的观测资料具有可比性。本文综述了星载光学遥感仪器历史数据再定标的方法和思路,包括发展地球稳定目标和天体月球的辐射基准模型,重构长序列历史数据再定标精细算法模型。论文系统介绍了如何构建历史数据再定标的地球稳定目标—沙漠、冰雪、深对流云(DCC)等辐射基准模型,以及用于交叉定标及基准溯源的典型参考仪器及基准数据评价。本文还综述了光学载荷历史数据再定标模型重构需要综合考虑的几个关键方面,包括影响辐射定标不确定性的杂散光、串光、偏振等要素的影响机理,并采用仪器定标全链路仿真和关键定标参数精细重构,建立仪器响应的短周期波动订正模型和长周期衰变模型;构建仪器响应与空间、光谱、热学、轨道等内外要素关联的精细定标机理模型;开展仪器响应的多目标跟踪和长序列宽动态综合定标系数推算,并采用计算智能的相对定标技术,实现卫星长序列历史资料的自动再定标和长周期衰减订正,建立同一仪器寿命期内辐射响应及衰变特征模型。本文综述的历史辐射基准、再定标模型及定标的影响机理等最新研究进展,为中国历史遥感数据再定标提供了系统性解决思路,为进一步提高遥感数据长期定标质量和可靠性奠定了理论方法基础。
After more than thirty years of effort
China’s meteorological
land
ocean
and environmental disaster reduction constellations have formed a systematic and operational development trend. Domestically developed multi-series remote sensing satellites have accumulated long-term continuous observation data
which provide possibilities for climate change research and environmental change detection.
To unleash the enormous potential of satellite observation historical data in climate change research
it is necessary to address the high-precision radiometric calibration problem of remote sensing payloads between different satellites and throughout the entire lifespan of a single satellite. This requires the establishment of a unified historical radiometric reference and a refined recalibration model
ensuring the comparability of observation data from different instruments and different time periods.
This article provides an overview of the methods and approaches for historical data recalibration of spaceborne optical remote sensing instruments. It includes the development of radiometric reference models based on Earth-stable targets and celestial bodies such as the Moon
as well as the reconstruction of fine algorithm models for recalibrating long sequences of historical data. The paper systematically introduces how to construct radiometric reference models using Earth-stable targets such as deserts
ice and snow
DCC
as well as typical reference instruments and benchmark data evaluation for cross-calibration and benchmark traceability.
This article also reviews several key aspects that need to be considered when reconstructing recalibration models for optical payload historical data. This includes the influence mechanisms of stray light
ghosting
polarization
and other factors affecting radiometric calibration uncertainty. It discusses the establishment of short-period fluctuation correction models and long-period decay models for instrument response through full-link simulation of instrument calibration
fine reconstruction of key calibration parameters
and the construction of fine calibration mechanism models related to spatial
spectral
thermal
and orbital elements. The article explores multi-objective tracking of instrument response
calculation of long sequence wide dynamic range calibration coefficients
and the application of computational intelligence for relative calibration techniques. This allows for automatic recalibration and long-period decay correction of satellite historical data
as well as the establishment of radiation response and decay characteristic models within the lifespan of a single instrument.By providing the latest research progress on historical radiometric references
recalibration models
and analysis of calibration mechanisms
this article offers a systematic approach to the recalibration of China’s historical remote sensing data. It lays the methodological foundation for further improving the long-term calibration quality and reliability of remote sensing data.
历史数据再定标辐射基准精细再定标模型仪器衰变模型定标机理模型
retrospective calibrationradiometric referencefine recalibration modelcalibration mechanism modelinstrumental degradation model
Arai K. 2001. A reflectance based vicarious calibration with on-site instruments monitoring. Advances in Space Research, 28(1): 11-20 [DOI: 10.1016/S0273-1177(01)00265-4http://dx.doi.org/10.1016/S0273-1177(01)00265-4]
Bannari A, Omari K, Teillet P M and Fedosejevs G. 2005. Potential of Getis statistics to characterize the radiometric uniformity and stability of test sites used for the calibration of Earth observation sensors. IEEE Transactions on Geoscience and Remote Sensing, 43(12): 2918-2926 [DOI: 10.1109/TGRS.2005.857913http://dx.doi.org/10.1109/TGRS.2005.857913]
Bhatt R, Doelling D, Scarino B, Haney C and Gopalan A. 2017. Development of seasonal BRDF models to extend the use of deep convective clouds as invariant targets for satellite SWIR-band calibration. Remote Sensing, 9(10): 1061 [DOI: 10.3390/rs9101061http://dx.doi.org/10.3390/rs9101061]
Bojinski S, Verstraete M, Peterson T C, Richter C, Simmons A and Zemp M. 2014. The concept of essential climate variables in support of climate research, applications, and policy. Bulletin of the American Meteorological Society, 95(9): 1431-1443 [DOI: 10.1175/BAMS-D-13-00047.1http://dx.doi.org/10.1175/BAMS-D-13-00047.1]
Brest C L and Rossow W B. 1992. Radiometric calibration and monitoring of NOAA AVHRR data for ISCCP. International Journal of Remote Sensing, 13(2): 235-273 [DOI: 10.1080/01431169208904037http://dx.doi.org/10.1080/01431169208904037]
Cao C Y, Ma L L, Uprety S, Li C R and Tang L L. 2010. Spectral characterization of the Dunhuang calibration/validation site using hyperspectral measurements//Proceedings Volume 7862, Earth Observing Missions and Sensors: Development, Implementation, and Characterization. Incheon: SPIE: 137-146 [DOI: 10.1117/12.869606http://dx.doi.org/10.1117/12.869606]
Chander G, Xiong X, Choi T and Angal A. 2010. Monitoring on-orbit calibration stability of the Terra MODIS and Landsat 7 ETM+ sensors using pseudo-invariant test sites. Remote Sensing of Environment, 114(4): 925-939 [DOI: 10.1016/j.rse.2009.12.003http://dx.doi.org/10.1016/j.rse.2009.12.003]
Chang, T. Xiong, X. 2011. Assessment of MODIS Thermal Emissive Band On-orbit Calibration. IEEE Trans. Geosci. Remote Sens., 49(6), 2415-2425.10.1109/TGRS.2010.2098881.
Chen L, Hu X Q, Xu N and Zhang P. 2013. The application of deep convective clouds in the calibration and response monitoring of the reflective solar bands of FY-3A/MERSI (Medium Resolution Spectral Imager). Remote Sensing, 5(12): 6958-6975 [DOI: 10.3390/rs5126958http://dx.doi.org/10.3390/rs5126958]
Chen L, Zhang P, Wu R H, Hu X Q and Zhang L. 2018. Monitoring radiometric response change of visible band for FY-2 geostationary meteorological satellite by lunar target. Journal of Remote Sensing, 22(2): 211-219
陈林, 张鹏, 吴荣华, 胡秀清, 张璐. 2018. 月球目标监测风云二号静止气象卫星可见光辐射响应变化. 遥感学报, 22(2): 211-219 [DOI: 10.11834/jrs.20186464http://dx.doi.org/10.11834/jrs.20186464]
De Vries C, Danaher T, Denham R, Scarth P and Phinn S. 2007. An operational radiometric calibration procedure for the Landsat sensors based on pseudo-invariant target sites. Remote Sensing of Environment, 107(3): 414-429 [DOI: 10.1016/j.rse.2006.09.019http://dx.doi.org/10.1016/j.rse.2006.09.019]
Doelling D R, Morstad D, Scarino B R, Bhatt R and Gopalan A. 2013. The characterization of deep convective clouds as an invariant calibration target and as a visible calibration technique. IEEE Transactions on Geoscience and Remote Sensing, 51(3): 1147-1159 [DOI: 10.1109/TGRS.2012.2225066http://dx.doi.org/10.1109/TGRS.2012.2225066]
Eplee RE, Sun JQ, Meister G, et al., 2011. Cross calibration of SeaWiFS and MODIS using on-orbit observations of the Moon. Appl Opt, Jan 10;50(2):120-33. doi: 10.1364/AO.50.000120http://dx.doi.org/10.1364/AO.50.000120. PMID: 21221136.
Fox N, Aiken J, Barnett J J, Briottet X, Carvell R, Frohlich C, Groom S B, Hagolle O, Haigh J D, Kieffer H H, Lean J, Pollock D B, Quinn T, Sandford M C W, Schaepman M, Shine K P, Schmutz W K, Teillet P M, Thome K J, Verstraete M M and Zalewski E. 2003. Traceable radiometry underpinning terrestrial- and Helio-studies (TRUTHS). Advances in Space Research, 32(11): 2253-2261 [DOI: 10.1016/S0273-1177(03)90551-5http://dx.doi.org/10.1016/S0273-1177(03)90551-5]
Fraser G T and Datla R V. 2006. Achieving satellite instrument calibration for climate change (ASIC3)//Proceedings of the National Conference Center. NIST
Goldberg M, Ohring G, Butler J, Cao C, Datla R, Doelling D, Gärtner V, Hewison T, Iacovazzi B, Kim D, Kurino T, Lafeuille J, Minnis P, Renaut D, Schmetz J, Tobin D, Wang L, Weng F, Wu X, Yu F, Zhang P and Zhu T. 2011. The global space-based inter-calibration system. Bulletin of the American Meteorological Society, 92(4): 467-475 [DOI: 10.1175/2010BAMS2967.1http://dx.doi.org/10.1175/2010BAMS2967.1]
Gu X F, Tian G L, Yu T, Li X Y, Gao H L and Xie Y. 2013. Principle and Method of Radiometric Calibration for Space Optical Remote Sensor. Beijing: Science Press
顾行发, 田国良, 余涛, 李小英, 高海亮, 谢勇. 2013. 航天光学遥感器辐射定标原理与方法. 北京: 科学出版社
He X W, Hu X Q, He L L, Wang L, Tao B C, Hu W J and Feng X H. 2022. Surface reflectance spectral characteristic model of desert calibration site network in northwest China. Acta Optica Sinica, 42(6): 0628003
何兴伟, 胡秀清, 何灵莉, 王玲, 陶炳成, 胡文杰, 冯小虎. 2022. 我国西北部沙漠定标场网的地表反射率光谱特征模型. 光学学报, 42(6): 0628003 [DOI: 10.3788/AOS202242.0628003http://dx.doi.org/10.3788/AOS202242.0628003]
He Y Q, Hu W J, Hu X Q, Zhu J B, He X W and Jin W Q. 2023. Calibration site BRDF modeling method based on ground and low-altitude UAV joint observation. Acta Optica Sinica, 43(15): 1528001
何玉青, 胡文杰, 胡秀清, 朱吉彪, 何兴伟, 金伟其. 2023. 基于地面与低空无人机联合观测场地BRDF建模方法. 光学学报, 43(15): 1528001 [DOI: 10.3788/AOS230941http://dx.doi.org/10.3788/AOS230941]
He Y Q, Jiang M D, Hu X Q, Liu M Q, Jin W Q and Hu Q. 2022. Retrieval and analysis of MERSI polarization radiation characteristics based on ocean scene. Acta Optica Sinica, 42(6): 0628002
何玉青, 姜梦蝶, 胡秀清, 刘明奇, 金伟其, 胡奇. 2022. 基于洋面场景的MERSI偏振辐射特性反演及其分析方法. 光学学报, 42(6): 0628002 [DOI: 10.3788/AOS202242.0628002http://dx.doi.org/10.3788/AOS202242.0628002]
Heidinger A K, Foster M J, Walther A and Zhao X P. 2014. The pathfinder atmospheres-extended AVHRR climate dataset. Bulletin of the American Meteorological Society, 95(6): 909-922 [DOI: 10.1175/BAMS-D-12-00246.1http://dx.doi.org/10.1175/BAMS-D-12-00246.1]
Heidinger A K, Straka W C III, Molling C C, Sullivan J T and Wu X Q. 2010. Deriving an inter-sensor consistent calibration for the AVHRR solar reflectance data record. International Journal of Remote Sensing, 31(24): 6493-6517 [DOI: 10.1080/01431161.2010.496472http://dx.doi.org/10.1080/01431161.2010.496472]
Heidinger A K, Sullivan J T and Rao C R N. 2003. Calibration of visible and near-infrared channels of the NOAA-12 AVHRR using time series of observations over deserts. International Journal of Remote Sensing, 24(18): 3635-3649 [DOI: 10.1080/0143116021000023907http://dx.doi.org/10.1080/0143116021000023907]
Helder D L, Basnet B and Morstad D L. 2010. Optimized identification of worldwide radiometric pseudo-invariant calibration sites. Canadian Journal of Remote Sensing, 36(5): 527-539 [DOI: 10. 5589/m10-085http://dx.doi.org/10.5589/m10-085]
Hollmann R, Merchant C J, Saunders R, Downy C, Buchwitz M, Cazenave A, Chuvieco E, Defourny P, De Leeuw G, Forsberg R, Holzer-Popp T, Paul F, Sandven S, Sathyendranath S, Van Roozendael M and Wagner W. 2013. The ESA Climate Change Initiative: satellite data records for essential climate variables. Bulletin of the American Meteorological Society, 94(10): 1541-1552 [DOI: 10.1175/BAMS-D-11-00254.1http://dx.doi.org/10.1175/BAMS-D-11-00254.1]
Hu X Q. 2012. Unified Radiometric Recalibration Study on Long-term Historical Data Record of Meteorological Satellite Sensors. Beijing: Institute of Remote Sensing Applications, Chinese Academy of Sciences
胡秀清. 2012. 气象卫星长序列多遥感器历史数据统一辐射再定标方法研究. 北京: 中国科学院遥感应用研究所
Hu X Q, Liu J J, Sun L, Rong Z G, Li Y, Zhang Y, Zheng Z J, Wu R H, Zhang L J and Gu X F. 2010. Characterization of CRCS Dunhuang test site and vicarious calibration utilization for Fengyun (FY) series sensors. Canadian Journal of Remote Sensing, 36(5): 566-582 [DOI: 10.5589/m10-087http://dx.doi.org/10.5589/m10-087]
Hu X Q, Wang L, Wang J W, He L L, Chen L, Xu N, Tao B C, Zhang L, Zhang P and Lu N M. 2020. Preliminary selection and characterization of pseudo-invariant calibration sites in Northwest China. Remote Sensing, 12(16): 2517 [DOI: 10.3390/rs12162517http://dx.doi.org/10.3390/rs12162517]
Hu Y B, Wielicki B A, Yang P, Stackhouse P W, Lin B and Young D F. 2004. Application of deep convective cloud albedo observation to satellite-based study of the terrestrial atmosphere: monitoring the stability of spaceborne measurements and assessing absorption anomaly. IEEE Transactions on Geoscience and Remote Sensing, 42(11): 2594-2599 [DOI: 10.1109/TGRS.2004.834765http://dx.doi.org/10.1109/TGRS.2004.834765]
Huang S S, Zeng Y, Chen W R and Yi W. 2021. Status and application of China’s civil land observation satellites. Satellite Applications, (10): 12-16
黄树松, 曾湧, 陈卫荣, 易维. 2021. 我国民用陆地观测卫星现状及应用. 卫星应用, (10): 12-16
Jing Z H, Hu X Q, Wang Y, Wu R H, Chen L, Zhang L, Huang Y, Wang S, Li S and Zhang P. 2023. Activities to promote the moon as an absolute calibration reference. Remote Sensing, 15(9): 2431 [DOI: 10.3390/rs15092431http://dx.doi.org/10.3390/rs15092431]
Li G R, He Y Q, Hu X Q and Wang J W. 2023. Cross calibration technology for the same platform of FY-3 optical imager based on IR-MAD no-change pixels. National Remote Sensing Bulletin, 27(10): 2337-2349
李国荣, 何玉青, 胡秀清, 王俊伟. 2023. 基于IR-MAD不变像元的风云三号光学成像仪同平台交叉定标. 遥感学报, 27(10): 2337-2349 [DOI: 10.11834/jrs.20221585http://dx.doi.org/10.11834/jrs.20221585]
Li X T, Ye Z Z, Ye Y M and Hu X Q. 2022. A convolutional neural network-based relative radiometric calibration method. IEEE Transactions on Geoscience and Remote Sensing, 60: 5403611 [DOI: 10.1109/TGRS.2021.3105182http://dx.doi.org/10.1109/TGRS.2021.3105182]
Lin M S, He X Q, Jia Y J, Bai Y, Ye X M and Gong F. 2019. Advances in marine satellite remote sensing technology in China.Acta Oceanologica Sinica, 41(10): 99-112
林明森, 何贤强, 贾永君, 白雁, 叶小敏, 龚芳. 2019. 中国海洋卫星遥感技术进展. 海洋学报, 41(10): 99-112 [DOI: 10.3969/j.issn.0253-4193.2019.10.007http://dx.doi.org/10.3969/j.issn.0253-4193.2019.10.007]
Loveless M, Knuteson R, Revercomb H, Borg L, DeSlover D, Martin G, Taylor J, Iturbide-Sanchez F and Tobin D. 2023. Comparison of the AIRS, IASI, and CrIS infrared sounders using simultaneous nadir overpasses: novel methods applied to data from 1 October 2019 to 1 October 2020. Earth and Space Science, 10(7): e2023EA002878 [DOI: 10.1029/2023EA002878http://dx.doi.org/10.1029/2023EA002878]
Lu N M, Ding L, Zheng X B, Ye X, Li C R, Lü D R, Zhang P, Hu X Q, Zhou C H, You Z, Fang J C, Gong J Y, Jiang X W, Li J J, Ma L L and Xu N. 2020. Introduction of the radiometric benchmark satellite being developed in China for remote sensing. Journal of Remote Sensing (Chinese), 24(6): 672-680
卢乃锰, 丁雷, 郑小兵, 叶新, 李传荣, 吕达仁, 张鹏, 胡秀清, 周成虎, 尤政, 房建成, 龚建雅, 蒋兴伟, 李建军, 马灵玲, 徐娜. 2020. 中国空间辐射测量基准技术. 遥感学报, 24(6): 672-680 [DOI: 10.11834/jrs.20200011http://dx.doi.org/10.11834/jrs.20200011]
Ma L L, Wang N, Gao C X, Zhao Y G, Yang B Y, Wang X H, Han Q J, Xu N, Song P L and Liu Y K. 2023. On-orbit absolute radiometric calibration for optical remote sensing satellites: progress and trends. National Remote Sensing Bulletin, 27(5): 1061-1087
马灵玲, 王宁, 高彩霞, 赵永光, 杨本永, 王新鸿, 韩启金, 徐娜, 宋培兰, 刘耀开. 2023. 光学遥感卫星在轨绝对辐射定标: 进展与趋势. 遥感学报, 27(5): 1061-1087 [DOI: 10.11834/jrs.20222117http://dx.doi.org/10.11834/jrs.20222117]
Masonis S J and Warren S G. 2001. Gain of the AVHRR visible channel as tracked using bidirectional reflectance of Antarctic and Greenland snow. International Journal of Remote Sensing, 22(8): 1495-1520 [DOI: 10.1080/01431160121039http://dx.doi.org/10.1080/01431160121039]
Miesch C, Cabot F, Briottet X, et al. 2003. Assimilation method to derive spectral ground reflectance of desert sites from satellite datasets[J]. Remote Sensing of Environment,87(2/3):359-370.
Molling C C, Heidinger A K, Straka W C III and Wu X Q. 2010. Calibrations for AVHRR channels 1 and 2: review and path towards consensus. International Journal of Remote Sensing, 31(24): 6519-6540 [DOI: 10.1080/01431161.2010.496473http://dx.doi.org/10.1080/01431161.2010.496473]
Ohring G, Tansock J, Emery W, Butler J, Flynn L, Weng F Z, St Germain K, Wielicki B, Cao C Y, Goldberg M, Xiong J, Fraser G, Kunkee D, Winker D, Miller L, Ungar S, Tobin D, Anderson J G, Pollock D, Shipley S, Thurgood A, Kopp G, Ardanuy P and Stone T. 2007. Achieving satellite instrument calibration for climate change. EoS, Transactions American Geophysical Union, 88(11): 136 [DOI: 10.1029/2007EO110015http://dx.doi.org/10.1029/2007EO110015]
Pagano T S, Aumann H H, Broberg S E, Cañas C, Manning E M, Overoye K O and Wilson R C. 2020. SI-traceability and measurement uncertainty of the atmospheric infrared sounder version 5 level 1B radiances. Remote Sensing, 12(8): 1338 [DOI: 10.3390/rs12081338http://dx.doi.org/10.3390/rs12081338]
Platnick S, Meyer K G, King M D, Wind G, Amarasinghe N, Marchant B, Arnold G T, Zhang Z B, Hubanks P A, Holz R E, Yang P, Ridgway W L and Riedi J. 2017. The MODIS cloud optical and microphysical products: collection 6 updates and examples from Terra and Aqua. IEEE Transactions on Geoscience and Remote Sensing, 55(1): 502-525 [DOI: 10.1109/TGRS.2016.2610522http://dx.doi.org/10.1109/TGRS.2016.2610522]
Popp T, Hegglin M I, Hollmann R, Ardhuin F, Bartsch A, Bastos A, Bennett V, Boutin J, Brockmann C, Buchwitz M, Chuvieco E, Ciais P, Dorigo W, Ghent D, Jones R, Lavergne T, Merchant C J, Meyssignac B, Paul F, Quegan S, Sathyendranath S, Scanlon T, Schröder M, Simis S G H and Willén U. 2020. Consistency of satellite climate data records for Earth system monitoring. Bulletin of the American Meteorological Society, 101(11): E1948-E1971 [DOI: 10.1175/BAMS-D-19-0127.1http://dx.doi.org/10.1175/BAMS-D-19-0127.1]
Smith D L, Mutlow C T and Rao C N. 2002. Calibration monitoring of the visible and near-infrared channels of the Along-Track Scanning Radiometer-2 by use of stable terrestrial sites. Applied Optics, 41(3): 515-523 [DOI: 10.1364/AO.41.000515http://dx.doi.org/10.1364/AO.41.000515]
Stone T C and Kieffer H H. 2004. Assessment of uncertainty in ROLO lunar irradiance for on-orbit calibration//Proceedings Volume 5542, Earth Observing Systems IX. Denver: SPIE: 300-310 [DOI: 10.1117/12.560236http://dx.doi.org/10.1117/12.560236]
Stone T C, Rossow W B, Ferrier J and Hinkelman L M. 2013. Evaluation of ISCCP multisatellite radiance calibration for geostationary imager visible channels using the moon. IEEE Transactions on Geoscience and Remote Sensing, 51(3): 1255-1266 [DOI: 10.1109/TGRS.2012.2237520http://dx.doi.org/10.1109/TGRS.2012.2237520]
Sun L, Hu X Q and Xu N. 2019. Temperature sensitivity and on-orbit calibration analysis for FY-3B MERSI shortwave infrared bands. Journal of Atmospheric and Environmental Optics, 14(5): 374-384
孙凌, 胡秀清, 徐娜. 2019. FY-3B MERSI短波红外波段温度响应与在轨定标分析. 大气与环境光学学报, 14(5): 374-384 [DOI: 10.3969/j.issn.1673-6141.2019.05.008http://dx.doi.org/10.3969/j.issn.1673-6141.2019.05.008]
Sun L, Qiu H, Wu R H, Wang J, Zhang L Y and Zhang P. 2021. Long-term consistent recalibration of VIRR solar reflectance data record for Fengyun polar-orbiting satellites. Journal of Meteorological Research, 35(6): 926-942 [DOI: 10.1007/s13351-021-1049-3http://dx.doi.org/10.1007/s13351-021-1049-3]
Swanson R, Kehoe M, Stebbins M, Courrier H, Lukashin C, Jackson T, Cooney M, Davis W, Kopp G, Smith P, Buleri C, Stone T C. 2020. The ARCSTONE project to calibrate lunar reflectance//Proceedings of the 2020 IEEE Aerospace Conference. Big Sky: IEEE: 1-10 [DOI: 10.1109/AERO47225.2020.9172629http://dx.doi.org/10.1109/AERO47225.2020.9172629]
Tao B C, Hu X Q, Yang L K, Zhang L, Chen L, Xu N, Wang L, Wu R Q, Zhang D F and Zhang P. 2021. BRDF feature observation method and modeling of desert site based on UAV platform. National Remote Sensing Bulletin, 25(9): 1964-1977
陶炳成, 胡秀清, 杨磊库, 张璐, 陈林, 徐娜, 王玲, 吴瑞强, 张督锋, 张鹏. 2021. 无人机平台的沙漠场地BRDF特征观测方法及建模. 遥感学报, 25(9): 1964-1977 [DOI: 10.11834/jrs.20200084http://dx.doi.org/10.11834/jrs.20200084]
Teillet P M, Barsi J A, Chander G and Thome K J. 2007. Prime candidate Earth targets for the post-launch radiometric calibration of space-based optical imaging instruments//Proceedings Volume 6677, Earth Observing Systems XII. San Diego: SPIE: 304-315 [DOI: 10.1117/12.733156http://dx.doi.org/10.1117/12.733156]
Walton C C, Sullivan J T, Rao C R N and Weinreb M P. 1998. Corrections for detector nonlinearities and calibration inconsistencies of the infrared channels of the advanced very high resolution radiometer. Journal of Geophysical Research: Oceans, 103(C2): 3323-3337 [DOI: 10. 1029/97jc02018http://dx.doi.org/10.1029/97jc02018]
Wang J W, Hu X Q, He Y Q and Gao K. 2019. Response degradation analysis of Fengyun-3A medium-resolution spectral imager based on intelligent detection of invariant pixels. Acta Optica Sinica, 39(9): 0912001
王俊伟, 胡秀清, 何玉青, 高昆. 2019. 基于智能检测不变像元的FY-3A/MERSI仪器响应衰变分析. 光学学报, 39(9): 0912001 [DOI: 10.3788/AOS201939.0912001http://dx.doi.org/10.3788/AOS201939.0912001]
Wang L, Hu X Q, Chen L and He L L. 2018. Consistent calibration of VIRR reflective solar channels onboard FY-3A, FY-3B, and FY-3C using a multisite calibration method. Remote Sensing, 10(9): 1336 [DOI: 10.3390/rs10091336http://dx.doi.org/10.3390/rs10091336]
Wang L, Hu X Q, Xu N, Chen L, Zhang P and Xu H L. 2023. Research on construction of directional reflectance reference model for desert stable earth targets. National Remote Sensing Bulletin, 27(10): 2270-2282
王玲, 胡秀清, 徐娜, 陈林, 张鹏, 徐寒列. 2023. 沙漠稳定目标方向反射率参考模型构建研究. 遥感学报, 27(10): 2270-2282 [DOI: 10.11834/jrs.20221587http://dx.doi.org/10.11834/jrs.20221587]
Wang L, Hu X Q, Zheng Z J and Chen L. 2018. Radiometric calibration tracking detection for FY-3A/MERSI by joint use of snow targets in south and north poles. Acta Optica Sinica, 38(2): 0212003
王玲, 胡秀清, 郑照军, 陈林. 2018. 联合南北极冰雪目标的FY-3A/MERSI辐射定标跟踪监测. 光学学报, 38(2): 0212003 [DOI: 10.3788/AOS201838.0212003http://dx.doi.org/10.3788/AOS201838.0212003]
Wang W H, Cao C Y, Shao X, Blonski S, Choi T, Uprety S, Zhang B and Bai Y. 2022. Evaluation of 10-year NOAA/NASA Suomi NPP and NOAA-20 VIIRS Reflective Solar Band (RSB) Sensor Data Records (SDR) over deep convective clouds. Remote Sensing, 14(15): 3566 [DOI: 10.3390/rs14153566http://dx.doi.org/10.3390/rs14153566]
Wang Y, Hu X Q, Chen L, Huang Y, Li Z F, Wang S R, Zhang P, Wu R H, Zhang L and Wang W. 2020. Comparison of the lunar models using the hyper-spectral imager observations in Lijiang, China. Remote Sensing, 12(11): 1878 [DOI: 10.3390/rs12111878http://dx.doi.org/10.3390/rs12111878]
Wang Y, Huang Y, Wang S R, Li Z F, Zhang Z H, Hu X Q and Zhang P. 2017. Ground-based observation system development for the moon hyper-spectral imaging. Publications of the Astronomical Society of the Pacific, 129: 055002
Wielicki B A, Young D F, Mlynczak M G, Thome K J, Leroy S, Corliss J, Anderson J G, Ao C O, Bantges R, Best F, Bowman K, Brindley H, Butler J J, Collins W, Dykema J A, Doelling D R, Feldman D R, Fox N, Huang X, Holz R, Huang Y, Jin Z, Jennings D, Johnson D G, Jucks K, Kato S, Kirk-Davidoff D B, Knuteson R, Kopp G, Kratz D P, Liu X, Lukashin C, Mannucci A J, Phojanamongkolkij N, Pilewskie P, Ramaswamy V, Revercomb H, Rice J, Roberts Y, Roithmayr C M, Rose F, Sandford S, Shirley E L, Smith W L, Soden B, Speth P W, Sun W, Taylor P C, Tobin D and Xiong X. 2013. Achieving climate change absolute accuracy in orbit. Bulletin of the American Meteorological Society, 94(10): 1519-1539 [DOI: 10.1175/BAMS-D-12-00149.1http://dx.doi.org/10.1175/BAMS-D-12-00149.1]
Wilson T, Wu A S, Shrestha A, Geng X, Wang Z P, Moeller C, Frey R and Xiong X X. 2017. Development and implementation of an electronic crosstalk correction for bands 27-30 in terra MODIS collection 6. Remote Sensing, 9(6): 569 [DOI: 10.3390/rs9060569http://dx.doi.org/10.3390/rs9060569]
Wu A S, Xiong X X and Cao C Y. 2009. Using BRDF derived from MODIS observations over Dome C to characterize calibration stability and consistency of POS sensors//Proceedings Volume 7456, Atmospheric and Environmental Remote Sensing Data Processing and Utilization V: Readiness for GEOSS III. San Diego: SPIE: 37-48 [DOI: 10.1117/12.824743http://dx.doi.org/10.1117/12.824743]
Wu R H, Zhang P, Xu N, Hu X Q, Chen L, Zhang L and Yang Z D. 2020. FY-3D MERSI on-orbit radiometric calibration from the lunar view. Sensors, 20(17): 4690 [DOI: 10.3390/s20174690http://dx.doi.org/10.3390/s20174690]
Wu R H, Zhang P, Yang Z D, Hu X Q, Ding L and Chen L. 2016. Monitor radiance calibration of the remote sensing instrument with reflected lunar irradiance. Journal of Remote Sensing, 20(2): 278-289
吴荣华, 张鹏, 杨忠东, 胡秀清, 丁雷, 陈林. 2016. 基于月球反射的遥感器定标跟踪监测. 遥感学报, 20(2): 278-289 [DOI: 10.11834/jrs.20165155http://dx.doi.org/10.11834/jrs.20165155]
Wu R H, Zhang P, Zheng X B, Hu X Q, Xu N, Zhang L and Qiao Y L. 2019. Data collection and irradiance conversion of lunar obsevation for MERSI. Optics and Precision Engineering, 27(8): 1819-1827
吴荣华, 张鹏, 郑小兵, 胡秀清, 徐娜, 张璐, 乔延利. 2019. 星载成像仪观月数据提取和辐照度转换方法研究. 光学精密工程, 27(8): 1819-1827 [DOI: 10.3788/OPE.20192708.1819http://dx.doi.org/10.3788/OPE.20192708.1819]
Xian D, Zhang P, Gao L, Sun R J, Zhang H Z and Jia X. 2021. Fengyun meteorological satellite products for earth system science applications. Advances in Atmospheric Sciences, 38(8): 1267-1284 [DOI: 10.1007/s00376-021-0425-3http://dx.doi.org/10.1007/s00376-021-0425-3]
Xiao D, Xu N, Hu X Q, Wu R H, Niu X H, Wang X H and He Y Q. 2020. On-orbit detection and correction of crosstalk effect of FY-3D MERSI-Ⅱ signals. Acta Optica Sinica, 40(10): 1011001
肖达, 徐娜, 胡秀清, 吴荣华, 钮新华, 王向华, 何玉青. 2020. FY-3D MERSI-Ⅱ信号串扰效应在轨检测及订正. 光学学报, 40(10): 1011001 [DOI: 10.3788/AOS202040.1011001http://dx.doi.org/10.3788/AOS202040.1011001]
Xiong X, Che N, Pan C, Xie X, Sun J, Barnes W L and Guenther B. 2006. Results and lessons from MODIS reflective solar bands calibration: pre-launch to on-orbit//Proceedings Volume 6296, Earth Observing Systems XI. San Diego: SPIE: 52-62 [DOI: 10.1117/12.679144http://dx.doi.org/10.1117/12.679144]
Xiong X X and Barnes W. 2006. MODIS calibration and characterization//Qu J J, Gao W, Kafatos M, Murphy R E and Salomonson V V, eds. Earth Science Satellite Remote Sensing. Berlin: Springer: 77-97 [DOI: 10.1007/978-3-540-37294-3_5http://dx.doi.org/10.1007/978-3-540-37294-3_5]
Xu H L, Hu X Q, Xu N and Min M. 2015. Discrimination and correction for solar contamination on mid-infrared band of FY-3C/VIRR. Optics and Precision Engineering, 23(7): 1874-1879
徐寒列, 胡秀清, 徐娜, 闵敏. 2015. FY-3C/可见光红外扫描辐射计中红外通道太阳污染的识别和修正. 光学精密工程, 23(7): 1874-1879 [DOI: 10.3788/OPE.20152307.1874http://dx.doi.org/10.3788/OPE.20152307.1874]
Xu H L, Hu X Q, Xu N, Zhang L Y and Qi C L. 2023. Construction and validation of FY-3C/VIRR infrared window channel refinement re-calibration model. National Remote Sensing Bulletin, 27(10): 2307-2317
徐寒列, 胡秀清, 徐娜, 张里阳, 漆成莉. 2023.FY-3C/VIRR热红外通道精细化再定标模型的构建和精度验证. 遥感学报, 27(10): 2307-2317 [DOI: 10.11834/jrs.20231589http://dx.doi.org/10.11834/jrs.20231589]
Xu N, Wu R H, Hu X Q, Chen L, Wang L and Sun L. 2015. Integrated method for on-obit wide dynamic vicarious calibration of FY-3C MERSI reflective solar bands. Acta Optica Sinica, 35(12): 1228001
徐娜, 吴荣华, 胡秀清, 陈林, 王玲, 孙凌. 2015. FY-3C MERSI反射波段在轨宽动态综合辐射定标方法. 光学学报, 35(12): 1228001 [DOI: 10.3788/AOS201535.1228001http://dx.doi.org/10.3788/AOS201535.1228001]
Zhang B, Hu X Q, Zhou W W, Wang L, Chen L and Zhang P. 2023. Radiometric response evaluation of FY-3D/MERSI-Ⅱ reflective solar bands based on deep convective cloud. Acta Optica Sinica, 43(18): 1828003
张北, 胡秀清, 周为伟, 王玲, 陈林, 张鹏. 2023. 基于深对流云的FY-3D/MERSI-Ⅱ反射太阳波段辐射响应评估. 光学学报, 43(18): 1828003 [DOI: 10.3788/AOS230842http://dx.doi.org/10.3788/AOS230842]
Zhang L, Zhang P, Hu X Q, Chen L, Min M, Xu N and Wu R H. 2019a. Radiometric cross-calibration for multiple sensors with the moon as an intermediate reference. Journal of Meteorological Research, 33(5): 925-933 [DOI: 10.1007/s13351-019-9008-yhttp://dx.doi.org/10.1007/s13351-019-9008-y]
Zhang P, Lu N M, Li C R, Ding L, Zheng X B, Zhang X J, Hu X Q, Ye X, Ma L L, Xu N, Chen L and Schmetz J. 2020. Development of the Chinese space-based radiometric benchmark mission LIBRA. Remote Sensing, 12(14): 2179 [DOI: 10. 3390/rs12142179http://dx.doi.org/10.3390/rs12142179]
Zhang P, Lu Q F, Hu X Q, Gu S Y, Yang L, Min M, Chen L, Xu N, Sun L, Bai W G, Ma G and Xian D. 2019b. Latest progress of the Chinese meteorological satellite program and core data processing technologies. Advances in Atmospheric Sciences, 36(9): 1027-1045 [DOI: 10.1007/s00376-019-8215-xhttp://dx.doi.org/10.1007/s00376-019-8215-x]
Zhang Y P, Hu X Q, Yin D K and Gu M J. 2020. Onboard polarization calibration technique of multi-angle polarization imager based on sun glint from ocean. Acta Optica Sinica, 40(15): 1528002
张一鹏, 胡秀清, 殷德奎, 顾明剑. 2020. 基于海洋耀斑的多角度偏振成像仪在轨偏振定标技术. 光学学报, 40(15): 1528002 [DOI: 10.3788/AOS202040.1528002http://dx.doi.org/10.3788/AOS202040.1528002]
Zhao J Y, He Y Q, Hu X Q, Jin W Q, Zhang L J and Zhang D. 2021. Simulation of external stray light for FY-3C VIRR combined with satellite orbit attitude model. Remote Sensing, 13(24): 5037 [DOI: 10.3390/rs13245037http://dx.doi.org/10.3390/rs13245037]
Zhao Y H, Wang H, Li Y F, Li Y and Zhang X Q. 2021. Research on high-precision radiation calibration technology of long-wave infrared space optical remote sensor. National Remote Sensing Bulletin, 25(8): 1646-1654
赵艳华, 王浩, 李云飞, 李岩, 张秀茜. 2021. 长波红外空间光学遥感器高精度辐射定标技术. 遥感学报, 25(8): 1646-1654 [DOI: 10.11834/jrs.20211225http://dx.doi.org/10.11834/jrs.20211225]
Zhou W W, Hu X Q and Yang L K. 2023. Modeling of BRDF characteristics of deep convective cloud based on Himawari-8 satellite imager. Acta Optica Sinica, 43(12): 1228007
周为伟, 胡秀清, 杨磊库. 2023. 基于Himawari-8卫星成像仪的深对流云BRDF特性建模. 光学学报, 43(12): 1228007 [DOI: 10.3788/AOS221771http://dx.doi.org/10.3788/AOS221771]
Zhu J B, Hu X Q, Yang L K, Xu H L, Xu N and Zhang P. 2021. Study on the correction of sunlight pollution in mid-infrared image of FY-3C/VIRR. National Remote Sensing Bulletin, 25(3): 803-815
朱吉彪, 胡秀清, 杨磊库, 徐寒列, 徐娜, 张鹏. 2021. FY-3C/VIRR中红外图像太阳光污染订正. 遥感学报, 25(3): 803-815 [DOI: 10.11834/jrs.20209474http://dx.doi.org/10.11834/jrs.20209474]
相关文章
相关作者
相关机构