HY-1C卫星COCTS近海水体遥感反射率产品真实性检验
Validations of the HY-1C COCTS remote sensing reflectance products in coastal waters
- 2023年27卷第1期 页码:14-25
纸质出版日期: 2023-01-07
DOI: 10.11834/jrs.20235004
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-01-07 ,
扫 描 看 全 文
许玉壮,何贤强,白雁,朱乾坤,龚芳.2023.HY-1C卫星COCTS近海水体遥感反射率产品真实性检验.遥感学报,27(1): 14-25
Xu Y Z, He X Q, Bai Y, Zhu Q K and Gong F. 2023. Validations of the HY-1C COCTS remote sensing reflectance products in coastal waters. National Remote Sensing Bulletin, 27(1):14-25
中国HY-1C卫星水色水温扫描仪(COCTS)从2018年9月发射至今已积累了大量的全球观测数据,本文利用AERONET-OC实测数据集对COCTS近海水体遥感反射率(
R
rs)产品进行了真实性检验。本文对实测光谱数据集进行归一化处理,按光谱特征分为A(清洁)、B(比较清洁)、C(轻微浑浊)、D(比较浑浊)这4种光学水体类型,对COCTS
R
rs产品在这4类水体的精度进行评价。结果表明:COCTS反演
R
rs在A、B两种水体类型中存在轻微高估(平均绝对百分比误差APD(Average absolute Percent Difference)分别为38.79%、44.44%),在C类水体轻微低估(APD=40.85%),而在D类水体显著低估(APD=47.14%)。COCTS不同波段
R
rs产品在4类水体的精度亦存在差异,其中412 nm、443 nm波段在A类水体中和实测数据一致性相对较好(APD均小于30%);520 nm、565 nm波段在C、D两类水体中和实测数据一致性相对较好(APD均小于30%);670 nm波段在4种水体均呈现显著低估。由于AERONET-OC波段和COCTS存在差异,可能会导致评估误差存在高估,未来需要使用连续光谱的实测数据进一步评价COCTS产品精度。
A large number of global observation data was obtained by HY-1C COCTS since its launch in September 2018. The comprehensive evaluation of the HY-1C/COCTS products is important for further applications. In this study
we used the global in-situ data from AERONET-OC to evaluate the performance of the remote sensing reflectance (
R
rs) products of the HY-1C COCTS. Firstly
the AERONET-OC dataset were divided into four optical water types (A
clean water; B
relatively clean water; C
slightly turbid water; D
turbid water) based on a spectral normalization method. Secondly
the AERONET-OC
R
rs data and HY-1C/COCTS retrieved
R
rs data were matched according to the defined spatial-temporal windows (5×5 box and 1 hour). Finally
the performances of the HY-1C/COCTS
R
rs products were quantitatively evaluated in the four optical water types. As a result
good correlation between satellite and in-situ
R
rs data was indicated as R values among four types water ranged from 0.680 to 0.879. In type A water
the relatively good consistency between satellite and in-situ
R
rs data was observed as average percent difference (PD) at 6.79%
and the average absolute percent difference (APD) at 38.79%. In type B water
slight overestimation of satellite data occurred with PD at 18.73% and APD less than 45%. Underestimation of satellite data was reported in type C water
as negative remote sensing
R
rs data in 412 nm and 443 nm bands were with PD at -14.38% and APD at 47.14%. Similarly
in type D water
negative
R
rs in 412 nm and 443 nm bands were with PD at -32.35%
and APD at 47.14%
indicating significant underestimation from the satellite data. In addition
difference of accuracy performance of
R
rs products in different bands of COCTS for four water types was also observed.
R
rs presented good consistency between in situ and COCTS data in band 412 nm and 443 nm for type A water. Better consistency in band 520 nm and 565 nm was observed for type C
D water than type A water while significant underestimation of COCTS
R
rs were reported in all four types of water compared to in situ data. Overall
COCTS and in situ
R
rs data showed good consistency in clean water
but remained relatively inconsistent in turbid water. Our results also reported that the COCTS inversed
R
rs products are slightly overestimated compared with the AERONET-OC in situ data in type A and B water. In contrast
COCTS products slightly underestimated
R
rs for type C water but significantly underestimated for type D water. Attention should also be paid to enlarge the evaluated errors
as the AERONET-OC in-situ spectral data was linearly interpolated to match COCTS band. In the future
the hyperspectral in-situ
R
rs data should be used to further evaluate the performance of COCTS.
HY-1C卫星水色水温扫描仪遥感反射率AERONET-OC真实性检验
HY-1CCOCTSremote sensing reflectanceAERONET-OCvalidation
Bailey S W and Werdell P J. 2006. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sensing of Environment, 102(1/2): 12-23 [DOI: 10.1016/j.rse.2006.01.015http://dx.doi.org/10.1016/j.rse.2006.01.015]
Balasubramanian S V, Pahlevan N, Smith B, Binding C, Schalles J, Loisel H, Gurlin D, Greb S, Alikas K, Randla M, Bunkei M, Moses W, Nguyễn H, Lehmann M K, O'Donnell D, Ondrusek M, Han T H, Fichot C G, Moore T and Boss E. 2020. Robust algorithm for estimating total suspended solids (TSS) in inland and nearshore coastal waters. Remote Sensing of Environment, 246: 111768 [DOI: 10.1016/j.rse.2020.111768http://dx.doi.org/10.1016/j.rse.2020.111768]
Barnes B B, Cannizzaro J P, English D C and Hu C M. 2019. Validation of VIIRS and MODIS reflectance data in coastal and oceanic waters: an assessment of methods. Remote Sensing of Environment, 220: 110-123 [DOI: 10.1016/j.rse.2018.10.034http://dx.doi.org/10.1016/j.rse.2018.10.034]
Chen S G, Du K P, Lee Z, Liu J Q, Song Q J, Xue C, Wang D S, Lin M S, Tang J W and Ma C F. 2021. Performance of COCTS in global ocean color remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 59(2): 1634-1644 [DOI: 10.1109/TGRS.2020.3002460http://dx.doi.org/10.1109/TGRS.2020.3002460]
Fan W L,Huang X X and Fu Y T. 2022. Infrared information acquisition technology of Chinese ocean color and temperature scanner of HY-1 satellite. National Remote Sensing Bulletin, 26(8):1589-1601
范文龙,黄小仙,傅雨田. 2022. 海洋一号卫星水色水温扫描仪红外信息获取. 遥感学报,26(8):1589-1601 [DOI: 10.11834/jrs.20210071http://dx.doi.org/10.11834/jrs.20210071]
Harding L W, Magnuson A and Mallonee M E. 2005. SeaWiFS retrievals of chlorophyll in Chesapeake Bay and the mid-Atlantic bight. Estuarine, Coastal and Shelf Science, 62(1/2): 75-94 [DOI: 10.1016/j.ecss.2004.08.011http://dx.doi.org/10.1016/j.ecss.2004.08.011]
Hernández W J, Ortiz-Rosa S, Armstrong R A, Geiger E F, Eakin C M and Warner R A. 2020. Quantifying the effects of hurricanes Irma and Maria on coastal water quality in Puerto Rico using moderate resolution satellite sensors. Remote Sensing, 12(6): 964 [DOI: 10.3390/rs12060964http://dx.doi.org/10.3390/rs12060964]
Hlaing S, Harmel T, Gilerson A, Foster R, Weidemann A, Arnone R, Wang M H and Ahmed S. 2013. Evaluation of the VIIRS ocean color monitoring performance in coastal regions. Remote Sensing of Environment, 139: 398-414 [DOI: 10.1016/j.rse.2013.08.013http://dx.doi.org/10.1016/j.rse.2013.08.013]
Kyryliuk D and Kratzer S. 2019. Evaluation of Sentinel-3A OLCI products derived using the Case-2 regional coastcolour processor over the Baltic Sea. Sensors, 19(16): 3609 [DOI: 10.3390/s19163609http://dx.doi.org/10.3390/s19163609]
Ladner S D, Arnone R, Vandermeulen R, Martinolich P, Lawson A, Bowers J, Crouti R, Ondrusek M and Fargion G. 2014. Inter-satellite comparison and evaluation of Navy SNPP VIIRS and MODIS-Aqua ocean color properties//Proceedings Volume 9111, Ocean Sensing and Monitoring VI. Baltimore, Maryland: SPIE [DOI: 10.1117/12.2053060http://dx.doi.org/10.1117/12.2053060]
Li T J. 2012. China offshore marine: marine optical properties and remote sensing. Beijing: China Ocean Press: 193-196
李铜基. 2012. 中国近海海洋: 海洋光学特性与遥感. 北京: 海洋出版社: 193-196
Liu H Z, He X Q, Li Q Q, Hu X J, Ishizaka J, Kratzer S, Yang C, Shi T Z, Hu S B, Zhou Q M and Wu G F. 2022. Evaluation of ocean color atmospheric correction methods for Sentinel-3 OLCI using global automatic in situ observations. IEEE Transactions on Geoscience and Remote Sensing, 60: 1-19 [DOI: 10.1109/TGRS.2021.3136243http://dx.doi.org/10.1109/TGRS.2021.3136243]
Liu M, Guan L, Liu J, Song Q, Ma C, Li N. 2021. First Assessment of HY-1C COCTS Thermal Infrared Calibration Using MetOp-B IASI. Remote Sensing. 13(4):635. [DOI: 10.3390/rs13040635http://dx.doi.org/10.3390/rs13040635]
Shen Y F, Liu J Q, Ding J, Jiao J N, Sun S J and Lu Y C. 2020. HY-1C COCTS and CZI observation of marine oil spills in the South China Sea. Journal of Remote Sensing,24(8): 933-944
沈亚峰, 刘建强, 丁静, 焦俊男, 孙绍杰, 陆应诚. 2020. 海洋一号C星光学载荷对海面溢油的识别能力分析.遥感学报, 24(8): 933-944 [DOI:10.11834/jrs.20209475http://dx.doi.org/10.11834/jrs.20209475]
Song Q J, Chen S G, Xue C, Lin M S, Du K P, Li S C, Ma C F, Tang J W, Liu J Q, Zhang T L and Huang X X. 2019. Vicarious calibration of COCTS-HY1C at visible and near-infrared bands for ocean color application. Optics Express, 27(20): A1615-A1626 [DOI: 10.1364/OE.27.0A1615http://dx.doi.org/10.1364/OE.27.0A1615]
Thuillier G, Hersé M, Labs D, Foujols T, Peetermans W, Gillotay D, Simon P C and Mandel H. 2003. The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca Missions. Solar Physics, 214(1): 1-22 [DOI: 10.1023/A:1024048429145http://dx.doi.org/10.1023/A:1024048429145]
Wang M H, Liu X M, Jiang L D, Son S, Sun J Q, Shi W, Tan L Q, Naik P, Mikelsons K, Wang X L and Lance V. 2014. Evaluation of VIIRS ocean color products//Proceedings Volume 9261, Ocean Remote Sensing and Monitoring from Space. Beijing: SPIE [DOI: 10.1117/12.2069251http://dx.doi.org/10.1117/12.2069251]
Wang S L, Li J S, Zhang B, Spyrakos E, Tyler A N, Shen Q, Zhang F F, Kuster T, Lehmann M K, Wu Y H and Peng D L. 2018. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index. Remote Sensing of Environment, 217: 444-460 [DOI: 10.1016/j.rse.2018.08.026http://dx.doi.org/10.1016/j.rse.2018.08.026]
Wei J W, Lee Z and Shang S L. 2016. A system to measure the data quality of spectral remote-sensing reflectance of aquatic environments. Journal of Geophysical Research: Oceans, 121(11): 8189-8207 [DOI: 10.1002/2016JC012126http://dx.doi.org/10.1002/2016JC012126]
Xu Y Zh , He X Q , Bai Y , Wang D F , Zhu Q K and Ding X S. 2021. Evaluation of remote-sensing reflectance products from multiple ocean color missions in highly turbid water (hangzhou bay). Remote Sensing, 13(21):4267 [DOI : 10.3390/rs13214267http://dx.doi.org/10.3390/rs13214267]
Zhong S K,Lyu H,Yang Z Q,Li Y Y,Xu J F and Miao S. 2022. Remote sensing estimation method of organic suspended matter concentration in inland lakes based on Sentinel-3 OLCI data. National Remote Sensing Bulletin, 26(1):155-167
仲苏珂,吕恒,杨子谦,李杨杨,许佳峰,苗松. 2022. Sentinel-3 OLCI数据的内陆湖泊有机悬浮物浓度遥感估算. 遥感学报,26(1):155-167 [DOI: 10.11834/jrs.20221266http://dx.doi.org/10.11834/jrs.20221266]
Zibordi G, Holben B, Mélin F, D'Alimonte D, Berthon J F, Slutsker I and Giles D. 2010. AERONET-OC: an overview. Canadian Journal of Remote Sensing, 36(5): 488-497 [DOI: 10.5589/m10-073http://dx.doi.org/10.5589/m10-073]
Zibordi G, Mélin F and Berthon J F. 2018. A regional assessment of OLCI data products. IEEE Geoscience and Remote Sensing Letters, 15(10): 1490-1494 [DOI: 10.1109/LGRS.2018.2849329http://dx.doi.org/10.1109/LGRS.2018.2849329]
Zibordi G, Mélin F, Berthon J F, Holben B, Slutsker I, Giles D, D'Alimonte D, Vandemark D, Feng H, Schuster G, Fabbri B E, Kaitala S and Seppälä J. 2009. AERONET-OC: a network for the validation of ocean color primary products. Journal of Atmospheric and Oceanic Technology, 26(8): 1634-1651 [DOI: 10.1175/2009JTECHO654.1http://dx.doi.org/10.1175/2009JTECHO654.1]
Zibordi G, Strömbeck N, Mélin F and Berthon J F. 2006. Tower-based radiometric observations at a coastal site in the Baltic Proper. Estuarine, Coastal and Shelf Science, 69(3/4): 649-654 [DOI: 10.1016/j.ecss.2006.05.022http://dx.doi.org/10.1016/j.ecss.2006.05.022]
相关作者
相关机构