基于开源代码构建水色遥感数据处理系统——以HY-1C/D为例
Construction of ocean color remote sensing data processing system based on open source code: Taking HY-1C/D as an example
- 2023年27卷第1期 页码:68-78
纸质出版日期: 2023-01-07
DOI: 10.11834/jrs.20235008
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-01-07 ,
扫 描 看 全 文
王道生,杜克平,陈树果,薛程,叶小敏,李忠平.2023.基于开源代码构建水色遥感数据处理系统——以HY-1C/D为例.遥感学报,27(1): 68-78
Wang D S,Du K P,Chen S G,Xue C,Ye X M and Li Z P. 2023. Construction of ocean color remote sensing data processing system based on open source code: Taking HY-1C/D as an example. National Remote Sensing Bulletin, 27(1):68-78
中国在《国家民用空间基础设施中长期发展规划(2015年—2025年)》中专门规划了海洋观测卫星系列,通过从单一的试验星到星座的组网,建立起较为完善的海洋环境立体监测体系。由于大气层的影响以及海洋参数在大气层顶的贡献通常很低,卫星观测对海洋卫星地面数据处理系统定量化程度提出了很高的要求。美国自20世纪70年代发射CZCS水色卫星以来,在水色卫星数据处理系统上积累了多年经验。本文通过借鉴NASA成熟开源的SeaDAS科学处理框架,针对HY-1C/D海洋水色水温仪传感器(COCTS),集成前人算法,开发出HY-1C/D离线数据处理系统(OffLine-COCPS),实现了从L1B数据(几何定位和辐射定标后)开始到水体遥感反射比和各类水色产品制作的全链条数据流程。结果表明,自主建立的HY-1C/1D卫星COCTS传感器大气校正相关查找表基本满足了在全球范围内的定量化应用。根据统计投影得到HY-1C/1D双星COCTS反演的叶绿素全球产品,表明系统可实现对HY-1C/1D双星反演叶绿素产品提供支撑,进而与NASA官方发布的同期MODIS叶绿素产品散点图比较,整体分布趋势也与MODIS保持一致。通过本研究,成功实现了对国产水色卫星传感器和自主反演算法的扩展,后续亦可对大气校正算法和其他水色反演算法进行扩展,而对大气校正的精度和水色反演产品的精度评价还需开展更多的工作。
China has specifically planned a series of ocean observation satellites in the Medium and Long-term Development Plan for National Civil Space Infrastructure (2015—2025) to establish a more complete three-dimensional monitoring system for the marine environment through a network from a single test satellite to a constellation. Satellite observations place high demands on the degree of quantification of ocean satellite ground data processing systems due to the influence of the atmosphere and the typically low contribution of ocean parameters at the top of the atmosphere. Since the launch of CZCS water color satellite in 1970 s
the United States has accumulated many years of experience in water color satellite data processing system. In this paper
we develop HY-1C/1D offline data processing system (OffLine-COCPS)
which realizes the whole chain from L1B data (after geometric positioning and radiometric calibration) to the production of remote sensing reflection ratio of water bodies and various water color products for HY-1C/1D Chinese Ocean Color and Temperature Scanner (COCTS).Based on NASA's mature open-source SeaDAS Ocean Color Science SoftWare package and HY-1C/1D COCTS format
we develop and recompile the software package to support COCTS L1B data. Using a vector sea-air coupled radiative transfer model developed based on the successive scattering method
HY-1C/1D COCTS specific atmospheric related lookup table are generated.The results show that the independently established HY-1C/1D satellite COCTS sensor atmospheric correction related lookup table basically meets the quantitative application on a global scale. The global inversion chlorophyll products of HY-1C/1D COCTS are obtained based on statistical projection
indicating that the system can realize support for HY-1C/1D dual-satellite missions
and then the overall distribution trend is also consistent with MODIS when compared with the official MODIS chlorophyll product scatter plot released by NASA for the same period. Through this study
the extension of the domestic water color satellite sensor and the independent inversion algorithm has been successfully realized
and the atmospheric correction algorithm and other water color inversion algorithms can be extended subsequently
while more work is needed to evaluate the accuracy of atmospheric correction and the accuracy of water color inversion products.
海洋遥感水色卫星HY-1C/1D处理系统SeaDAS
ocean remote sensingwater color satelliteHY-1C/1Dprocessing systemSeaDAS
Ahmad Z, Franz B A, McClain C R, Kwiatkowska E J, Werdell J, Shettle E P and Holben B N. 2010. New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans: publisher’s note. Applied Optics, 50(5): 626-626 [DOI: 10.1364/AO.50.000626http://dx.doi.org/10.1364/AO.50.000626]
Bailey S W, Franz B A and Werdell P J. 2010. Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing. Optics Express, 18(7): 7521-7527 [DOI: 10.1364/OE.18.007521http://dx.doi.org/10.1364/OE.18.007521]
Bates D R. 1984. Rayleigh scattering by air. Planetary and Space Science, 32(6): 785-790 [DOI: 10.1016/0032-0633(84)90102-8http://dx.doi.org/10.1016/0032-0633(84)90102-8]
Bodhaine B A, Wood N B, Dutton E G and Slusser J R. 1999. On rayleigh optical depth calculations. Journal of Atmospheric and Oceanic Technology, 16(11): 1854-1861 [DOI: 10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2http://dx.doi.org/10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2]
Chen S G, Du K P, Lee Z, Liu J Q, Song Q J, Xue C, Wang D S, Lin M S, Tang J W and Ma C F. 2021. Performance of COCTS in global ocean color remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 59(2): 1634-1644 [DOI: 10.1109/TGRS.2020.3002460http://dx.doi.org/10.1109/TGRS.2020.3002460]
Cox C and Munk W. 1954. Measurement of the roughness of the sea surface from photographs of the sun’s glitter. Journal of the Optical Society of America, 44(11): 838-850 [DOI: 10.1364/JOSA.44.000838http://dx.doi.org/10.1364/JOSA.44.000838]
Franz B A, Bailey S W, Kuring N and Werdell P J. 2015. Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS. Journal of Applied Remote Sensing, 9(1): 096070 [DOI: 10.1117/1.jrs.9.096070http://dx.doi.org/10.1117/1.jrs.9.096070]
Fu, G , Baith, K S and McClain, C R. 1998. SeaDAS: the SeaWiFS data analysis system// Proceedings of the 4th Pacific Ocean Remote Sensing Conference. Qingdao, China: 73-79.
Gordon H R and Wang M H. 1994. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. Applied Optics, 33(3): 443-452 [DOI: 10.1364/AO.33.000443http://dx.doi.org/10.1364/AO.33.000443]
Hu C M, Lee Z and Franz B. 2012. Chlorophyll a algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference. Journal of Geophysical Research: Oceans, 117(C1): C01011 [DOI: 10.1029/2011JC007395http://dx.doi.org/10.1029/2011JC007395]
Jiang X W, Lin M S and Zhang Y G. 2016. Progress and prospect of Chinese ocean satellites. Journal of Remote Sensing, 20(5): 1185-1198
蒋兴伟, 林明森, 张有广. 2016. 中国海洋卫星及应用进展. 遥感学报, 20(5): 1185-1198 [DOI: 10.11834/jrs.20166153http://dx.doi.org/10.11834/jrs.20166153]
Lee Z P, Darecki M, Carder K L, Davis C O, Stramski S and Rhea W J. 2005. Diffuse attenuation coefficient of downwelling irradiance: an evaluation of remote sensing methods. Journal of Geophysical Research: Oceans, 110(C2): C02017 [DOI: 10.1029/2004jc002573http://dx.doi.org/10.1029/2004jc002573]
Lee Z P, Shang S L, Hu C M, Du K P, Weidemann A, Hou W L, Lin J F and Lin G. 2015. Secchi disk depth: a new theory and mechanistic model for underwater visibility. Remote Sensing of Environment, 169: 139-149 [DOI: 10.1016/j.rse.2015.08.002http://dx.doi.org/10.1016/j.rse.2015.08.002]
Lin M S, He X Q, Jia Y J, Bai Y, Ye X M and Gong F. 2019. Advances in marine satellite remote sensing technology in China. Haiyang Xuebao, 41(10): 99-112
林明森, 何贤强, 贾永君, 白雁, 叶小敏, 龚芳. 2019. 中国海洋卫星遥感技术进展. 海洋学报, 41(10): 99-112 [DOI: 10.3969/j.issn.0253-4193.2019.10.007http://dx.doi.org/10.3969/j.issn.0253-4193.2019.10.007]
Mishchenko M I and Travis L D. 1997. Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight. Journal of Geophysical Research: Atmospheres, 102(D14): 16989-17013 [DOI: 10.1029/96JD02425http://dx.doi.org/10.1029/96JD02425]
Mishchenko M I, Travis L D and Lacis A A. 2002. Scattering, Absorption, and Emission of Light by Small Particles. 3rd ed. Cambridge, U. K.: Cambridge University Press
O'Reilly J E, Maritorena S, Mitchell B G, Siegel D A, Carder K L, Garver S A, Kahru M and Mcclain C. 1998. Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research: Oceans, 103(C11): 24937-24953 [DOI: 10.1029/98JC02160http://dx.doi.org/10.1029/98JC02160]
Vanhellemont Q and Ruddick K. 2015. Advantages of high quality SWIR bands for ocean colour processing: examples from Landsat-8. Remote Sensing of Environment, 161: 89-106 [DOI: 10.1016/j.rse.2015.02.007http://dx.doi.org/10.1016/j.rse.2015.02.007]
Wang M H and Shi W. 2007. The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. Optics Express, 15(24): 15722-15733 [DOI: 10.1364/OE.15.015722http://dx.doi.org/10.1364/OE.15.015722]
Wang M H, Shi W, Jiang L D and Voss K. 2016. NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors. Optics Express, 24(18): 20437-20453 [DOI: 10.1364/OE.24.020437http://dx.doi.org/10.1364/OE.24.020437]
Wang X L, Liu X M, Jiang L D, Wang M H and Sun J Q. 2014. VIIRS ocean color data visualization and processing with IDL-based NOAA-SeaDAS//Proceedings Volume 9261, Ocean Remote Sensing and Monitoring from Space. Beijing, China: SPIE, 92611H [DOI: 10.1117/12.2070478http://dx.doi.org/10.1117/12.2070478]
Yang H Y and Gordon H R. 1997. Remote sensing of ocean color: assessment of water-leaving radiance bidirectional effects on atmospheric diffuse transmittance. Applied Optics, 36(30): 7887-7897 [DOI: 10.1364/AO.36.007887http://dx.doi.org/10.1364/AO.36.007887]
相关作者
相关机构