基于HY-1C/D卫星CZI的海洋、湖泊中漂浮藻藻华的光谱分析与识别
Spectral analysis and identification of floating algal blooms in oceans and lakes based on HY-1C/D CZI observations
- 2023年27卷第1期 页码:157-170
纸质出版日期: 2023-01-07
DOI: 10.11834/jrs.20235009
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-01-07 ,
扫 描 看 全 文
齐琳,胡传民,陆应诚,马荣华.2023.基于HY-1C/D卫星CZI的海洋、湖泊中漂浮藻藻华的光谱分析与识别.遥感学报,27(1): 157-170
Qi L,Hu C M,Lu Y C and Ma R H. 2023. Spectral analysis and identification of floating algal blooms in oceans and lakes based on HY-1C/D CZI observations. National Remote Sensing Bulletin, 27(1):157-170
近年来,全球多个区域都有大量关于海洋和湖泊中漂浮藻藻华暴发的相关报道,主要包括浒苔“绿潮”、马尾藻“金潮”、夜光藻“赤潮”以及蓝藻水华等等。这些藻华的暴发不仅会给其所处的海洋、湖泊生态环境带来多方面的影响,还可能造成经济损失甚至危及人类的身体健康。HY-1C/D CZI等高分辨率新型水色传感器的发射可以提高针对漂浮藻藻华的监测能力。根据全球海洋和湖泊中主要漂浮藻藻华的种类和分布范围,本文使用HY-1C/D CZI影像数据(50 m分辨率,重访周期3 d)获取了不同区域、不同类型漂浮藻的信息,并分析了典型像元的光谱特征。基于光谱特征分析,并结合不同种类藻华暴发的环境特征,应该可以利用HY-1C/D CZI影像进行针对典型像素漂浮藻类型的区分和识别。针对中国近海出现的浒苔、马尾藻和夜光藻等“多潮齐发”的现象,CZI的这个特点对于提高精细化监测具有重要的意义。
In recent years
various types of floating algal blooms have been reported in oceans and lakes around the world. These include “green tides” of
Ulva
“golden tides” of
Sargassum
“red tides” of
Noctiluca
and cyanobacterial blooms
among others. These floating algal blooms not only represent hazards to the marine and lake ecosystems
but also cause economic losses and human health problems. The launch of new satellite ocean color sensors can improve the monitoring capability of existing satellites for floating algal blooms.to evaluate the capacity of HY-1C/D CZI sensors (50 m resolution
3-day revisit) in detecting and differentiating various types of floating algal blooms
and to analyze the spectral characteristics of blooms of several major floating algae using CZI data. Based on the types and distributions of major floating algal blooms in the global oceans and lakes
CZI data are obtained and analyzed for their spectral characteristics from the visually identified bloom features in the CZI false-color Red-Green-Blue images. The spectral characteristics are presented from the difference spectra between the identified image features and the surrounding waters
thus minimizing the impact of atmospheric signals and water signals on the spectra. All floating algal blooms show elevated reflectance in the near infrared wavelengths. In the visible wavelength range
the spectral shapes of
Ulva prolifera
Sargassum horneri
and red
Noctiluca scintillas
are different and therefore can be differentiated from each other. Other blooms
for example
Trichodesmium
blooms or
Microcystis
blooms
can also be differentiated once some ancillary information is available.Based on the spectral features and combined with the environmental characteristics
the multi-band Hy-1C/D CZI images are found to be able to detect and differentiate different floating algal blooms. This capacity is important for monitoring floating algal blooms in the Yellow Sea and East China Sea where “multi-tide outbreaks” of
Ulva
Sargassum
and
Noctiluca
may occur at the same time. Because of the high spatial and temporal resolutions
such a capacity is expected to make HY-1C/D CZI an important satellite sensor in near real-time monitoring as well as in quantitative analysis of floating algal blooms in the near future.
卫星遥感HY-1C/D CZI漂浮藻浒苔马尾藻夜光藻束毛藻蓝藻
floating algaeHY-1C/D CZIUlvaSargassumNoctilucacyanobacteria
Bi Y X, Zhang S Y, Wang W D and Wu Z L. 2014. Vertical distribution pattern of Sargassum horneri and its relationship with environmental factors around Gouqi Island. Acta Ecologica Sinica, 34(17): 4931-4937
毕远新, 章守宇, 王伟定, 吴祖立. 2014. 枸杞岛铜藻垂直分布格局及成因分析. 生态学报, 34(17): 4931-4937 [DOI: 10.5846/stxb201301030013http://dx.doi.org/10.5846/stxb201301030013]
Binding C E, Greenberg T A, Mccullough G, Watson S B and Page E. 2018. An analysis of satellite-derived chlorophyll and algal bloom indices on Lake Winnipeg. Journal of Great Lakes Research, 44(3): 436-446 [DOI: 10.1016/j.jglr.2018.04.001http://dx.doi.org/10.1016/j.jglr.2018.04.001]
Blondeau-Patissier D, Brando V E, Lønborg C, Leahy S M and Dekker A G. 2018. Phenology of Trichodesmium spp. blooms in the Great Barrier Reef lagoon, Australia, from the ESA-MERIS 10-year mission. PLoS One, 13(12): e0208010 [DOI: 10.1371/journal.pone.0208010http://dx.doi.org/10.1371/journal.pone.0208010]
Capone D G, Zehr J P, Paerl H W, Bergman B and Carpenter E J. 1997. Trichodesmium, a globally significant marine cyanobacterium. Science, 276(5316): 1221-1229 [DOI: 10.1126/science.276.5316.1221http://dx.doi.org/10.1126/science.276.5316.1221]
Chen Y L, Wan J H, Zhang J, Ma Y J, Wang L, Zhao J H and Wang Z Z. 2019. Spatial-temporal distribution of golden tide based on high-resolution satellite remote sensing in the South Yellow Sea. Journal of Coastal Research, 90: 221-227 [DOI: 10.2112/SI90-027.1http://dx.doi.org/10.2112/SI90-027.1]
Do Rosário Gomes H, Goes J I, Matondkar S G P, Buskey E J, Basu S, Parab S and Thoppil P. 2014. Massive outbreaks of Noctiluca scintillans blooms in the Arabian Sea due to spread of hypoxia. Nature Communications, 5: 4862 [DOI: 10.1038/ncomms5862http://dx.doi.org/10.1038/ncomms5862]
Elbraechter M and Qi Y. 1998. Aspects of noctiluca (Dinophyceae) population dynamics//Physiological Ecology of Harmful Algal Blooms. Berlin, Heidelberg: Springer-Verlag: 315-336
Ganf G G. 1974. Diurnal mixing and the vertical distribution of phytoplankton in a shallow equatorial lake (Lake George, Uganda). The Journal of Ecology, 62(2): 611-629 [DOI: 10.2307/2259002http://dx.doi.org/10.2307/2259002]
Gower J, Hu C M, Borstad G and King S. 2006. Ocean color satellites show extensive lines of floating Sargassum in the Gulf of Mexico. IEEE Transactions on Geoscience and Remote Sensing, 44(12): 3619-3625 [DOI: 10.1109/TGRS.2006.882258http://dx.doi.org/10.1109/TGRS.2006.882258]
Gower J, King S and Young E. 2014. Global remote sensing of Trichodesmium. International Journal of Remote Sensing, 35(14): 5459-5466 [DOI: 10.1080/01431161.2014.926422http://dx.doi.org/10.1080/01431161.2014.926422]
Granéli E and Turner J T. 2006. Ecology of Harmful Algae. Berlin Heidelberg: Springer [DOI: 10.1007/978-3-540-32210-8http://dx.doi.org/10.1007/978-3-540-32210-8]
Hansen P J, Miranda L and Azanza R. 2004. Green Noctiluca scintillans: a dinoflagellate with its own greenhouse. Marine Ecology Progress Series, 275: 79-87 [DOI: 10.3354/meps275079http://dx.doi.org/10.3354/meps275079]
Harrison P J, Furuya K, Glibert P M, Xu J, Liu H B, Yin K, Lee J H W, Anderson D M, Gowen R, Al-Azri A R and Ho A Y T. 2011. Geographical distribution of red and green Noctiluca scintillans. Chinese Journal of Oceanology and Limnology, 29(4): 807-831 [DOI: 10.1007/s00343-011-0510-zhttp://dx.doi.org/10.1007/s00343-011-0510-z]
Hu C M, Feng L, Hardy R F and Hochberg E J. 2015. Spectral and spatial requirements of remote measurements of pelagic Sargassum macroalgae. Remote Sensing of Environment, 167: 229-246 [DOI: 10.1016/j.rse.2015.05.022http://dx.doi.org/10.1016/j.rse.2015.05.022]
Hu C M, Li D Q, Chen C S, Ge J Z, Muller-Karger F E, Liu J P, Yu F and He M X. 2010. On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. Journal of Geophysical Research: Oceans, 115(C5): C05017 [DOI: 10.1029/2009JC005561http://dx.doi.org/10.1029/2009JC005561]
Hu C M, Li X F, Pichel W G and Muller-Karger F. 2009. Detection of natural oil slicks in the NW Gulf of Mexico using MODIS imagery. Geophysical Research Letters, 36(1): L01604 [DOI: 10.1029/2008GL036119http://dx.doi.org/10.1029/2008GL036119]
Hu C M, Murch B, Barnes B B, Wang M Q, Maréchal J P, Franks J, Johnson D, Lapointe B, Goodwin D, Schell J and Siuda A. 2016. Sargassum watch warns of incoming seaweed. Eos, 97(22), 10-15 [DOI: 10.1029/2016EO058355http://dx.doi.org/10.1029/2016EO058355]
Hu C M, Wang M Q, Lapointe B E, Brewton R A and Hernandez F J. 2021. On the Atlantic pelagic Sargassum’s role in carbon fixation and sequestration. Science of the Total Environment, 781: 146801 [DOI: 10.1016/J.SCITOTENV.2021.146801http://dx.doi.org/10.1016/J.SCITOTENV.2021.146801]
Hu L B, Hu C M and He M X. 2017. Remote estimation of biomass of Ulva prolifera macroalgae in the Yellow Sea. Remote Sensing of Environment, 192: 217-227 [DOI: 10.1016/j.rse.2017.01.037http://dx.doi.org/10.1016/j.rse.2017.01.037]
Hu Z M, Uwai S, Yu S H, Komatsu T, Ajisaka T and Duan D L. 2011. Phylogeographic heterogeneity of the brown macroalga Sargassum horneri (Fucaceae) in the northwestern Pacific in relation to late Pleistocene glaciation and tectonic configurations. Molecular Ecology, 20(18): 3894-3909 [DOI: 10.1111/j.1365-294X.2011.05220.xhttp://dx.doi.org/10.1111/j.1365-294X.2011.05220.x]
Huang X G, Wang D F, Bao M L, Gong F and Bai Y. 2018. Spectral characteristics of Sargassum horneri in seawater//Proceedings Volume 10850, Ocean Optics and Information Technology. Beijing, China: SPIE [DOI: 10.1117/12.2505672http://dx.doi.org/10.1117/12.2505672]
Kang Y. 2020. The ocean sheds “blue tears”, who is she crying for? Contemporary Tourism, 18(15): 3-5
康影. 2020. 海洋流下“蓝眼泪”, 她在为谁哭泣?. 当代旅游, 18(15): 3-5
Karl D, Letelier R, Tupas L, Dore J, Christian J and Hebel D. 1997. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature, 388(6642): 533-538 [DOI: 10.1038/41474http://dx.doi.org/10.1038/41474]
Kiφrboe T and Titelman J. 1998. Feeding, prey selection and prey encounter mechanisms in the heterotrophic dinoflagellate Noctiluca scintillans. Journal of Plankton Research, 20(8): 1615-1636 [DOI: 10.1093/plankt/20.8.1615http://dx.doi.org/10.1093/plankt/20.8.1615]
Komatsu T, Mizuno S, Natheer A, Kantachumpoo A, Tanaka K, Morimoto A, Hsiao S T, Rothäusler E A, Shishidou H, Aoki M and Ajisaka T. 2014. Unusual distribution of floating seaweeds in the East China Sea in the early spring of 2012. Journal of Applied Phycology, 26(2): 1169-1179 [DOI: 10.1007/s10811-013-0152-yhttp://dx.doi.org/10.1007/s10811-013-0152-y]
Komatsu T, Tatsukawa K, Filippi J B, Sagawa T, Matsunaga D, Mikami A, Ishida K, Ajisaka T, Tanaka K, Aoki M, Wang W D, Liu H F, Zhang S D, Zhou M D and Sugimoto T. 2007. Distribution of drifting seaweeds in eastern East China Sea. Journal of Marine Systems, 67(3/4): 245-252 [DOI: 10.1016/j.jmarsys.2006.05.018http://dx.doi.org/10.1016/j.jmarsys.2006.05.018]
Lapointe B E, Brewton R A, Herren L W, Wang M, Hu C, Mcgillicuddy D J, Lindell S, Hernandez F J and Morton P L. 2021. Nutrient content and stoichiometry of pelagic Sargassum reflects increasing nitrogen availability in the Atlantic Basin. Nature Communications, 12: 3060 [DOI: 10.1038/s41467-021-23135-7http://dx.doi.org/10.1038/s41467-021-23135-7]
Li Y S, Chen S G, Xue C, Zhang T L and Zhang Y X. 2020. Distribution of bioluminescence intensity and the driving factor analysis in the Yellow sea and Bohai sea in summer. Oceanologia et Limnologia Sinica, 51(6): 1391-1401
李艺师, 陈树果, 薛程, 张亭禄, 张雨潇. 2020. 黄渤海夏季生物发光强度分布特征及其影响因素分析. 海洋与湖沼, 51(6): 1391-1401 [DOI: 10.11693/hyhz20200200036http://dx.doi.org/10.11693/hyhz20200200036]
Liang C, Liu L, Liu J Q, Zou B, Zou Y R and Cui S X. 2020. Extracting mangrove information using MNF transformation based on HY-1C CZI spectral indices reconstruction data. Haiyang Xuebao, 42(4): 104-112
梁超, 刘利, 刘建强, 邹斌, 邹亚荣, 崔松雪. 2020. 基于HY-1C CZI影像光谱指数重构数据MNF变换的红树林提取. 海洋学报, 42(4): 104-112 [DOI: 10.3969/j.issn.0253-4193.2020.04.012http://dx.doi.org/10.3969/j.issn.0253-4193.2020.04.012]
Liang S, Qian H L and Qi Y Z. 2000. Problem on the red tide in coastal China sea. Ecological Science, 19(4) : 44-50
梁松, 钱宏林, 齐雨藻. 2000. 中国沿海的赤潮问题. 生态科学, 19(4): 44-50 [DOI: 10.3969/j.issn.1008-8873.2000.04.007http://dx.doi.org/10.3969/j.issn.1008-8873.2000.04.007]
Liu D Y, Keesing J K, Dong Z J, Zhen Y, Di B P, Shi Y J, Fearns P and Shi P. 2010. Recurrence of the world’s largest green-tide in 2009 in Yellow Sea, China: porphyra yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms. Marine Pollution Bulletin, 60(9): 1423-1432 [DOI: 10.1016/j.marpolbul.2010.05.015http://dx.doi.org/10.1016/j.marpolbul.2010.05.015]
Liu J Q, Zeng T, Ye X M, Liu J P and Ma X F. 2021. Monitoring of ice crack changes and fracture processes on the Antarctic Brent Ice Shelf by HY-1C/D satellite. Haiyang Xuebao, 43(7): 205-206
刘建强, 曾韬, 叶小敏, 刘金普, 马小峰. 2021. HY-1C/D卫星对南极布伦特冰架冰裂缝变化与断裂过程的监测. 海洋学报, 43(7): 205-206 [DOI: 10.12284/hyxb2021155http://dx.doi.org/10.12284/hyxb2021155]
Ma R H, Tang J W, Duan H T and Pan D L. 2009. Progress in lake water color remote sensing. Journal of Lake Sciences, 21(2): 143-158
马荣华, 唐军武, 段洪涛, 潘德炉. 2009. 湖泊水色遥感研究进展. 湖泊科学, 21(2): 143-158 [DOI: 10.18307/2009.0201http://dx.doi.org/10.18307/2009.0201]
Ma X Y. 2020. The gift and warning of the sea - "blue tears". Knowledge is Power, (6) : 28-29
马小丫 2020. 大海的馈赠与警告——“蓝眼泪”. 知识就是力量, (6): 28-29
McKinna L I W. 2015. Three decades of ocean-color remote-sensing Trichodesmium spp. in the World’s oceans: a review. Progress in Oceanography, 131: 177-199 [DOI: 10.1016/j.pocean.2014.12.013http://dx.doi.org/10.1016/j.pocean.2014.12.013]
McKinna L I W, Furnas M J and Ridd P V. 2011. A simple, binary classification algorithm for the detection of Trichodesmium spp. within the Great Barrier Reef using MODIS imagery. Limnology and Oceanography: Methods, 9(2): 50-66 [DOI: 10.4319/lom.2011.9.50http://dx.doi.org/10.4319/lom.2011.9.50]
Mikelsons K and Wang M H. 2018. Interactive online maps make satellite ocean data accessible. Eos, 99 (10.1029). [DOI: 10.1029/2018eo096563http://dx.doi.org/10.1029/2018eo096563]
Paerl H W and Huisman J. 2008. Blooms like it hot. Science, 320(5872): 57-58 [DOI: 10.1126/science.1155398http://dx.doi.org/10.1126/science.1155398]
Paerl H W and Huisman J. 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports, 1(1): 27-37 [DOI: 10.1111/j.1758-2229.2008.00004.xhttp://dx.doi.org/10.1111/j.1758-2229.2008.00004.x]
Paerl H W, Xu H, McCarthy M J, Zhu G W, Qin B Q, Li Y P and Gardner W S. 2011. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N and P) management strategy. Water Research, 45(5): 1973-1983 [DOI: 10.1016/j.watres.2010.09.018http://dx.doi.org/10.1016/j.watres.2010.09.018]
Qi L and Hu C M. 2021. To what extent can Ulva and Sargassum be detected and separated in satellite imagery?. Harmful Algae, 103: 102001 [DOI: 10.1016/j.hal.2021.102001http://dx.doi.org/10.1016/j.hal.2021.102001]
Qi L, Hu C M, Duan H T, Cannizzaro J and Ma R H. 2014. A novel MERIS algorithm to derive cyanobacterial phycocyanin pigment concentrations in a eutrophic lake: theoretical basis and practical considerations. Remote Sensing of Environment, 154: 298-317 [DOI: 10.1016/j.rse.2014.08.026http://dx.doi.org/10.1016/j.rse.2014.08.026]
Qi L, Hu C M, Barnes B B, Lapointe B E, Chen Y L, Xie Y Y and Wang M H. 2022a. Climate and Anthropogenic Controls of Seaweed Expansions in the East China Sea and Yellow Sea. Geophysical Research Letters, 49: e2022GL098185 [DOI: 10.1029/2022GL098185http://dx.doi.org/10.1029/2022GL098185]
Qi L, Hu C M, Liu J Q, Ma R H, Zhang Y J and Zhang S. 2022b. Noctiluca blooms in the East China Sea bounded by ocean fronts. Harmful Algae, 112: 102172 [DOI: 10.1016/j.hal.2022.102172http://dx.doi.org/10.1016/j.hal.2022.102172]
Qi L, Hu C M, Mikelsons K, Wang M H, Lance V, Sun S J, Barnes B B, Zhao J and Van Der Zande D. 2020. In search of floating algae and other organisms in global oceans and lakes. Remote Sensing of Environment, 239: 111659 [DOI: 10.1016/j.rse.2020.111659http://dx.doi.org/10.1016/j.rse.2020.111659]
Qi L, Hu C M, Visser P M and Ma R H. 2018. Diurnal changes of cyanobacteria blooms in Taihu Lake as derived from GOCI observations. Limnology and Oceanography, 63(4): 1711-1726 [DOI: 10.1002/lno.10802http://dx.doi.org/10.1002/lno.10802]
Qi L, Hu C M, Wang M Q, Shang S L and Wilson C. 2017. Floating algae blooms in the East China Sea. Geophysical Research Letters, 44(22): 11501-11509 [DOI: 10.1002/2017GL075525http://dx.doi.org/10.1002/2017GL075525]
Qi L, Hu C M, Xing Q G and Shang S L. 2016. Long-term trend of Ulva prolifera blooms in the western Yellow Sea. Harmful Algae, 58: 35-44 [DOI: 10.1016/j.hal.2016.07.004http://dx.doi.org/10.1016/j.hal.2016.07.004]
Qi L, Tsai S F, Chen Y L, Le C F and Hu C M. 2019. In search of red Noctiluca scintillans blooms in the East China Sea. Geophysical Research Letters, 46(11): 5997-6004 [DOI: 10.1029/2019GL082667http://dx.doi.org/10.1029/2019GL082667]
Qi Y Z, Huang W J and Qiu X H. 1991. Population dynamic time series models of Noctiluca scintillans in Da-Pong Bay South China Sea. Journal of Jinan University, 12(3): 96-103
齐雨藻, 黄伟建, 邱璇鸿. 1991. 大鹏湾夜光藻种群动态的时间序列模型. 暨南大学学报, 12(3): 96-103
Qin B Q, Yang G J, Ma J R, Deng J M, Li W, Wu T F, Liu L Z, Gao G, Zhu G W, Zhang Y L. 2016. Dynamics of variability and mechanism of harmful cyanobacteria bloom in Lake Taihu, China. Chinese Science Bulletin, 61(7) : 759-770
秦伯强, 杨桂军, 马健荣, 邓建明, 李未, 吴挺峰, 刘丽贞, 高光, 朱广伟, 张运林. 2016. 太湖蓝藻水华“暴发”的动态特征及其机制. 科学通报, 61(7): 759-770 [DOI: 10.1360/N972015-00400http://dx.doi.org/10.1360/N972015-00400]
Shen Y F, Liu J Q, Ding J, Jiao J N, Sun S J and Lu Y C. 2020. HY-1C COCTS and CZI observation of marine oil spills in the South China Sea. Journal of Remote Sensing (Chinese), 24(8): 933-944
沈亚峰, 刘建强, 丁静, 焦俊男, 孙绍杰, 陆应诚. 2020. 海洋一号C星光学载荷对海面溢油的识别能力分析. 遥感学报, 24(8): 933-944 [DOI: 10.11834/jrs.20209475http://dx.doi.org/10.11834/jrs.20209475]
Smetacek V and Zingone A. 2013. Green and golden seaweed tides on the rise. Nature, 504(7478): 84-88 [DOI: 10.1038/nature12860http://dx.doi.org/10.1038/nature12860]
Su L, Shan T F, Pang S J and Li J. 2018. Analyses of the genetic structure of Sargassum horneri in the Yellow Sea: implications of the temporal and spatial relations among floating and benthic populations. Journal of Applied Phycology, 30(2): 1417-1424 [DOI: 10.1007/s10811-017-1296-yhttp://dx.doi.org/10.1007/s10811-017-1296-y]
Sun D Y, Chen Y, Wang S Q, Zhang H L, Qiu Z F, Mao Z H and He Y J. 2021. Using Landsat 8 OLI data to differentiate Sargassum and Ulva prolifera blooms in the South Yellow Sea. International Journal of Applied Earth Observation and Geoinformation, 98: 102302 [DOI: 10.1016/j.jag.2021.102302http://dx.doi.org/10.1016/j.jag.2021.102302]
Sun J and Guo S J. 2011. Dinoflagellate heterotrophy. Acta Ecologica Sinica, 31(20): 6270-6286
孙军, 郭术津. 2011. 甲藻的异养营养型. 生态学报, 31(20): 6270-6286
Tian Y, Li T, Hu S M, Xie X D and Liu S. 2020. Temporal and spatial characteristics of harmful algal blooms in Guangdong coastal area. Marine Environmental Science, 39(1): 1-8
田媛, 李涛, 胡思敏, 谢学东, 刘胜. 2020. 广东省沿岸海域藻华发生的时空特征. 海洋环境科学, 39(1): 1-8 [DOI: 10.13634/j.cnki.mes.2020.01.001http://dx.doi.org/10.13634/j.cnki.mes.2020.01.001]
Uhlig G and Sahling G. 1990. Long-term studies on Noctiluca scintillans in the German Bight population dynamics and red tide phenomena 1968-1988. Netherlands Journal of Sea Research, 25(1/2): 101-112 [DOI: 10.1016/0077-7579(90)90012-6http://dx.doi.org/10.1016/0077-7579(90)90012-6]
Umezaki I. 1984. Ecological studies of Sargassum horneri (Turner) C. Agardh in Obama Bay, Japan Sea. Bulletin of the Japanese Society of Scientific Fisheries, 50(7): 1193-1200 [DOI: 10.2331/suisan.50.1193http://dx.doi.org/10.2331/suisan.50.1193]
Van Mol B, Ruddick K, Astoreca R, Park Y and Nechad B. 2007. Optical detection of a Noctiluca scintillans bloom. EARSeL eProceedings, 6: 130-137
Walsby A E. 1994. Gas vesicles. Microbiological Reviews, 58(1): 94-144 [DOI: 10.1128/mr.58.1.94-144.1994http://dx.doi.org/10.1128/mr.58.1.94-144.1994]
Wang L, Lin X, Goes J I and Lin S J. 2016. Phylogenetic analyses of three genes of Pedinomonas noctilucae, the green endosymbiont of the marine dinoflagellate Noctiluca scintillans, reveal its affiliation to the order Marsupiomonadales (Chlorophyta, Pedinophyceae) under the reinstated name Protoeuglena noctilucae. Protist, 167(2): 205-216 [DOI: 10.1016/j.protis.2016.02.005http://dx.doi.org/10.1016/j.protis.2016.02.005]
Wang M Q and Hu C M. 2016. Mapping and quantifying Sargassum distribution and coverage in the Central West Atlantic using MODIS observations. Remote Sensing of Environment, 183: 350-367 [DOI: 10.1016/j.rse.2016.04.019http://dx.doi.org/10.1016/j.rse.2016.04.019]
Xing Q G, An D Y, Zheng X Y, Wei Z N, Wang X H, Li L, Tian L Q and Chen J. 2019. Monitoring seaweed aquaculture in the Yellow Sea with multiple sensors for managing the disaster of macroalgal blooms. Remote Sensing of Environment, 231: 111279 [DOI: 10.1016/j.rse.2019.111279http://dx.doi.org/10.1016/j.rse.2019.111279]
Xing Q G, Guo R H, Wu L L, An D Y, Cong M, Qin S and Li X R. 2017. High-resolution satellite observations of a new hazard of golden tides caused by floating sargassum in winter in the Yellow Sea. IEEE Geoscience and Remote Sensing Letters, 14(10): 1815-1819 [DOI: 10.1109/LGRS.2017.2737079http://dx.doi.org/10.1109/LGRS.2017.2737079]
Yang X X, Yang Y, Xu C Y, Ji H H and Cheng X S. 2019. Changes of red tide of nocturnal algae in Fujian and Zhejiang waters from 2009 to 2019 and analysis of main environmental factors//Third Annual Conference on Ocean Development and Management. Hefei: 71-78
杨幸幸, 杨颖, 许彩燕, 纪焕红, 程祥圣. 2019. 福建和浙江海域夜光藻赤潮2009-2019年的变化及主要环境因子分析//第三届海洋开发与管理学术年会. 合肥: 71-78
Zhang Y Y, He P M, Li H M, Li G, Liu J H, Jiao F L, Zhang J H, Huo Y Z, Shi X Y, Su R G, Ye N H, Liu D Y, Yu R C, Wang Z L, Zhou M J and Jiao N Z. 2019. Ulva prolifera green-tide outbreaks and their environmental impact in the Yellow Sea, China. National Science Review, 6(4): 825-838 [DOI: 10.1093/nsr/nwz026http://dx.doi.org/10.1093/nsr/nwz026]
Zhang Y L, Van Dijk M A, Liu M L, Zhu G W and Qin B Q. 2009. The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: field and experimental evidence. Water Research, 43(18): 4685-4697 [DOI: 10.1016/j.watres.2009.07.024http://dx.doi.org/10.1016/j.watres.2009.07.024]
Zhou Q, Liu J Q, Wang J R, Deng S Q and Tian L Q. 2020. Study on turbidity monitoring of Zhiyin Lake and Huangjia Lake in Wuhan during the COVID-19 epidemic using HY-1C satellite CZI data. Geomatics and Information Science of Wuhan Universit, 45(5): 676-681
周屈, 刘建强, 王剑茹, 邓实权, 田礼乔. 2020. 利用HY-1C卫星CZI数据在COVID-19疫情期间武汉知音湖和黄家湖的浊度监测研究. 武汉大学学报(信息科学版), 45(5): 676-681 [DOI: 10.13203/j.whugis20200101http://dx.doi.org/10.13203/j.whugis20200101]
Zohary T and Robarts R D. 1990. Hyperscums and the population dynamics of Microcystis aeruginosa. Journal of Plankton Research, 12(2): 423-432 [DOI:10.1093/plankt/12.2.423http://dx.doi.org/10.1093/plankt/12.2.423]
相关文章
相关作者
相关机构