黑河遥感试验:回顾与展望
Heihe remote sensing experiments: Retrospect and prospect
- 2023年27卷第2期 页码:224-248
纸质出版日期: 2023-02-07
DOI: 10.11834/jrs.20235013
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-02-07 ,
扫 描 看 全 文
李新,刘绍民,柳钦火,肖青,车涛,马明国,晋锐,冉有华,闻建光,徐自为,李增元.2023.黑河遥感试验:回顾与展望.遥感学报,27(2): 224-248
Li X,Liu S M,Liu Q H,Xiao Q,Che T,Ma M G,Jin R,Ran Y H,Wen J G,Xu Z W and Li Z Y. 2023. Heihe remote sensing experiments: Retrospect and prospect. National Remote Sensing Bulletin, 27(2):224-248
地球系统科学的基石之一是地球观测系统,许多观测试验甚至成为一个阶段地球系统科学认识和研究方法进步的里程碑。在这些观测试验中,遥感试验始终是核心组成部分。黑河遥感试验是以中国典型内陆河流域——黑河流域为研究区,以流域内山区冰冻圈、人工绿洲、天然绿洲的生态水文过程为研究对象,于2007年—2017年开展的大规模、多学科卫星—航空—地面综合遥感试验,历经“黑河综合遥感联合试验”和“黑河生态水文遥感试验”两个阶段,由52家单位,670余位科研人员参与,650多个试验数据集全部共享。黑河遥感试验以流域复杂异质性地表研究为特点,在多尺度观测方法创新、定量遥感发展、生态水文应用等方面取得了突破,实现了定量遥感和流域生态水文集成研究的深度结合。论文回顾了黑河遥感试验10年历程,凝练了尺度转换、异质性度量、不确定性定量的多尺度试验三原则,总结了星机地一体化、流域—子流域—足迹—单点多尺度嵌套、传感器网络、通量矩阵多尺度观测新方法,介绍了在多源遥感协同反演方法、异质性辐射传输模型、遥感产品真实性检验技术上的进步。在试验中也研发了降水、积雪、蒸散发、土壤水分、净初级生产力等10多种高分辨率流域尺度生态水文产品,并通过与流域生态水文模型的深度集成,算清了流域水账,揭示了绿洲—荒漠相互作用的完整图景,提出了涡动相关仪能量平衡不闭合的诊断方程。黑河遥感试验结束后,其观测系统转为黑河流域地表过程综合观测网继续运行,并持续孕育观测的新理论、新方法,更好地服务流域科学的探索和实践。
Earth observation systems are one of the cornerstones of Earth system science
and some milestone observational experiments have contributed greatly to the maturation of Earth system science and its research methodology. Among these observational experiments
remote sensing experiments have always played a key role. The Heihe remote sensing experiment is a large-scale and multidisciplinary satellite-airborne-ground integrated remote sensing experiment conducted from 2007 to 2017 in the Heihe River Basin
a typical inland river basin in China. The main scientific objectives are to observe the ecohydrological processes in the mountainous cryosphere
artificial oasis
and natural oasis in the Heihe River Basin. It was implemented in two stages: the Watershed Allied Telemetry Experimental Research (WATER) and the Heihe Watershed Allied Telemetry Experimental Research (HiWATER). More than 670 researchers participated in the Heihe remote sensing experiment
and more than 650 experimental datasets have been shared open and free. Characterized by capturing heterogeneities of complex land surfaces of the entire river basin
the Heihe remote sensing experiment has made breakthroughs in developing innovative multiscale observation methods
improving quantitative remote sensing models
and enhancing the applicability of remote sensing in ecohydrological studies. Overall
these progresses have led to a deeper harmonization of quantitative remote sensing and integrated ecohydrological research.
This paper reviews Heihe remote sensing experiments and prospects for the future development of experimental remote sensing. Aiming to address the scientific challenges of developing scaling methods
measuring heterogeneity
and quantifying uncertainties
we have made the following advances in Heihe remote sensing experiments. (1) Innovative observation methods such as integrated satellite-airborne-ground observation
nested multiscale point-footprint-watershed-basin observation
wireless sensor network observation
and flux matrix observation methods have been invented or refined into maturation. (2) A variety of multisource remote sensing cooperative inversion methods
e.g. different spatial resolutions
polar and geostationary orbits
and active and passive sensors
have been developed. In particular
radiative transfer models for heterogeneous land surfaces have been established and validated. (3) Systematic advances in remote sensing data product validation technology
including optimal sampling
and upscaling of in situ observations to pixel-scale truth
have been achieved and verified. (4) More than 10 types of high-resolution ecohydrological remote sensing data products over heterogeneous land surfaces
such as precipitation
snow cover
evapotranspiration
soil moisture
and net primary productivity
have been produced at the river basin scale. Moreover
based on our integrated ecohydrological models
the hydrological cycles at different scales were closed
the oasis-desert interaction mechanism was revealed
and a diagnostic equation to close the energy balance of the eddy covariance system was proposed.
Currently
the integrated observation system of the Heihe River basin is operating by taking the heritage of the Heihe remote sensing experiment. The Heihe River basin observation system will continue to support the development of new theories and methods of Earth observation technologies and serve the exploration and practice of watershed science and regional sustainable development.
黑河流域遥感试验流域观测系统多尺度观测航空遥感定量遥感尺度转换遥感产品真实性检验流域科学生态水文
Heihe river basinremote sensing experimentwatershed observing systemmulti-scale observationairborne remote sensingquantitative remote sensingscale transformationremote sensing productsvalidation of remote sensing productswatershed scienceecohydrology
Bian Z J, Du Y M, Li H, Cao B, Huang H G, Xiao Q and Liu Q H. 2017. Modeling the temporal variability of thermal emissions from row-planted scenes using a radiosity and energy budget method. IEEE Transactions on Geoscience and Remote Sensing, 55(10): 6010-6026 [DOI: 10.1109/TGRS.2017.2719098http://dx.doi.org/10.1109/TGRS.2017.2719098]
Bian Z J, Roujean J L, Lagouarde J P, Cao B, Li H, Du Y M, Liu Q, Xiao Q and Liu Q H. 2020. A semi-empirical approach for modeling the vegetation thermal infrared directional anisotropy of canopies based on using vegetation indices. ISPRS Journal of Photogrammetry and Remote Sensing, 160: 136-148 [DOI: 10.1016/j.isprsjprs.2019.12.004http://dx.doi.org/10.1016/j.isprsjprs.2019.12.004]
Bian Z J, Xiao Q, Cao B, Du Y M, Li H, Wang H S, Liu Q H and Liu Q. 2016. Retrieval of leaf, sunlit soil, and shaded soil component temperatures using airborne thermal infrared multiangle observations. IEEE Transactions on Geoscience and Remote Sensing, 54(8): 4660-4671 [DOI: 10.1109/TGRS.2016.2547961http://dx.doi.org/10.1109/TGRS.2016.2547961]
Cao B, Liu Q H, Du Y M, Li H, Wang H S and Xiao Q. 2015. Modeling directional brightness temperature over mixed scenes of continuous crop and road: a case study of the Heihe River Basin. IEEE Geoscience and Remote Sensing Letters, 12(2): 234-238 [DOI: 10.1109/LGRS.2014.2333874http://dx.doi.org/10.1109/LGRS.2014.2333874]
Che T, Li X, Liu S M, Li H Y, Xu Z W, Tan J L, Zhang Y, Ren Z G, Xiao L, Deng J, Jin R, Ma M G, Wang J and Yang X F. 2019. Integrated hydrometeorological, snow and frozen-ground observations in the alpine region of the Heihe River Basin, China. Earth System Science Data, 11(3): 1483-1499 [DOI: 10.5194/essd-11-1483-2019http://dx.doi.org/10.5194/essd-11-1483-2019]
Chen S P and Zhou S G. 1986. Review of airborne remote sensing experiment in Tengchong. Remote Sensing Information, (2): 11-12
陈述彭, 周上盖. 1986. 腾冲航空遥感试验回顾. 遥感信息, (2): 11-12
Cheng G D, Fu B J and Song C Q. 2020. Recent Progress of the Major Research Plan—Integrated Research on the Eco-Hydrological Process of the Heihe River Basin. Beijing: Science Press
程国栋, 傅伯杰, 宋长青. 2020. “黑河流域生态—水文过程集成研究”重大计划最新研究进展. 北京: 科学出版社
Cheng G D and Li X. 2015. Integrated research methods in watershed science. Science China: Earth Sciences, 58(7): 1159-1168
程国栋, 李新. 2015. 流域科学及其集成研究方法. 中国科学: 地球科学, 45(6): 811-819 [DOI: 10.1007/s11430-015-5074-xhttp://dx.doi.org/10.1007/s11430-015-5074-x]
Cheng G D, Li X, Zhao W Z, Xu Z M, Feng Q, Xiao S C and Xiao H L. 2014. Integrated study of the water-ecosystem-economy in the Heihe River Basin. National Science Review, 1(3): 413-428 [DOI: 10.1093/nsr/nwu017http://dx.doi.org/10.1093/nsr/nwu017]
Colin J and Faivre R. 2010. Aerodynamic roughness length estimation from very high-resolution imaging LIDAR observations over the Heihe basin in China. Hydrology and Earth System Sciences, 14(12): 2661-2669 [DOI: 10.5194/hess-14-2661-2010http://dx.doi.org/10.5194/hess-14-2661-2010]
Desai A R, Butterworth B, Metzger S and Mauder M. 2021. Advances in scaling and modeling of land-atmosphere interactions. EOS, 102 [DOI: 10.1029/2021EO155255http://dx.doi.org/10.1029/2021EO155255]
Dong S Y, Jin R, Kang J and Li D Z. 2015. Estimation of high-resolution soil moisture by using ENVISAT/ASAR global mode backscattering in the upper reaches of Heihe river basin. Remote Sensing Technology and Application. 30(4): 667-676
董淑英, 晋锐, 亢健, 李大治. 2015. ASAR GM后散时间序列数据估算黑河上游地表土壤水分. 遥感技术与应用, 30(4): 667-676 [DOI: 10.11873/j.issn.1004-0323.2015.4.0667http://dx.doi.org/10.11873/j.issn.1004-0323.2015.4.0667]
Faivre R, Colin J and Menenti M. 2017. Evaluation of methods for aerodynamic roughness length retrieval from very high-resolution imaging LIDAR observations over the Heihe Basin in China. Remote Sensing, 9(1): 63 [DOI: 10.3390/rs9010063http://dx.doi.org/10.3390/rs9010063]
Fan L, Xiao Q, Wen J G, Liu Q, Jin R, You D Q and Li X W. 2015. Mapping high-resolution soil moisture over heterogeneous cropland using multi-resource remote sensing and ground observations. Remote Sensing, 7(10): 13273-13297 [DOI: 10.3390/rs71013273http://dx.doi.org/10.3390/rs71013273]
Fang L, Liu Q, Xiao Q, Liu Q H and Liu Z G. 2009. Design and implementation of airborne wide-angle infrared dual-mode line/area array scanner in Heihe experiment. Advances in Earth Science, 24(7): 696-704
方莉, 刘强, 肖青, 柳钦火, 刘志刚. 2009. 黑河试验中机载红外广角双模式成像仪的设计及实现. 地球科学进展, 24(7): 696-704 [DOI: 10.3321/j.issn:1001-8166.2009.07.002http://dx.doi.org/10.3321/j.issn:1001-8166.2009.07.002]
Foken T. 2008. The energy balance closure problem: an overview. Ecological Applications, 18(6): 1351-1367 [DOI: 10.1890/06-0922.1http://dx.doi.org/10.1890/06-0922.1]
Ge Y, Jin Y, Stein A, Chen Y H, Wang J H, Wang J F, Cheng Q M, Bai H X, Liu M X and Atkinson P M. 2019. Principles and methods of scaling geospatial Earth science data. Earth-Science Reviews, 197: 102897 [DOI: 10.1016/j.earscirev.2019.102897http://dx.doi.org/10.1016/j.earscirev.2019.102897]
Ge Y, Wang J H, Heuvelink G B M, Jin R, Li X and Wang J F. 2015. Sampling design optimization of a wireless sensor network for monitoring ecohydrological processes in the Babao River basin, China. International Journal of Geographical Information Science, 29(1): 92-110 [DOI: 10.1080/13658816.2014.948446http://dx.doi.org/10.1080/13658816.2014.948446]
Goodrich D C, Heilman P, Anderson M, Baffaut C, Bonta J, Bosch D, Bryant R, Cosh M, Endale D, Veith T L, Havens S C, Hedrick A, Kleinman P J, Langendoen E J, McCarty G, Moorman T, Marks D, Pierson F, Rigby J R, Schomberg H, Starks P, Steiner J, Strickland T and Tsegaye T. 2021. The USDA-ARS experimental watershed network: evolution, lessons learned, societal benefits, and moving forward. Water Resources Research, 57(2): e2019WR026473 [DOI: 10.1029/2019WR026473http://dx.doi.org/10.1029/2019WR026473]
Han X, Franssen H J H, Rosolem R, Jin R, Li X and Vereecken H. 2015. Correction of systematic model forcing bias of CLM using assimilation of Cosmic-Ray neutrons and land surface temperature: a study in the Heihe Catchment, China. Hydrology and Earth System Sciences, 19: 615-629 [DOI: 10.5194/hess-19-615-2015http://dx.doi.org/10.5194/hess-19-615-2015]
Hao D L, Wen J G, Xiao Q, Wu S B, Lin X W, You D Q and Tang Y. 2018. Modeling anisotropic reflectance over composite sloping terrain. IEEE Transactions on Geoscience and Remote Sensing, 56(7): 3903-3923 [DOI: 10.1109/TGRS.2018.2816015http://dx.doi.org/10.1109/TGRS.2018.2816015]
He X L, Liu S M, Xu T R, Yu K L, Gentine P, Zhang Z, Xu Z W, Jiao D D and Wu D X. 2022. Improving predictions of evapotranspiration by integrating multi-source observations and land surface model. Agricultural Water Management, 272: 107827 [DOI: 10.1016/j.agwat.2022.107827http://dx.doi.org/10.1016/j.agwat.2022.107827]
Hu G C and Jia L. 2015. Monitoring of evapotranspiration in a semi-arid inland river basin by combining microwave and optical remote sensing observations. Remote Sensing, 7(3): 3056-3087. [DOI: 10.3390/rs70303056http://dx.doi.org/10.3390/rs70303056]
Hu T, Liu Q H, Du Y M, Li H, Wang H S and Cao B. 2015. Analysis of the land surface temperature scaling problem: a case study of airborne and satellite data over the Heihe Basin. Remote Sensing, 7(5): 6489-6509 [DOI: 10.3390/rs70506489http://dx.doi.org/10.3390/rs70506489]
Hu Y Q, Qi Y J and Yang X L. 1990. Preliminary analyses about characteristics of microclimate and heat energy budget in Hexi Gobi (Huayin). Plateau Meteorology, 9(2): 113-119
胡隐樵, 奇跃进, 杨选利. 1990. 河西戈壁(化音)小气候和热量平衡特征的初步分析. 高原气象, 9(2): 113-119
Huang C L, Chen W J, Li Y, Shen H F and Li X. 2016a. Assimilating multi-source data into land surface model to simultaneously improve estimations of soil moisture, soil temperature, and surface turbulent fluxes in irrigated fields. Agricultural and Forest Meteorology, 230-231: 142-156 [DOI: 10.1016/j.agrformet.2016.03.013http://dx.doi.org/10.1016/j.agrformet.2016.03.013]
Huang G H, Li X, Huang C L, Liu S M, Ma Y F and Chen H. 2016b. Representativeness errors of point-scale ground-based solar radiation measurements in the validation of remote sensing products. Remote Sensing of Environment, 181: 198-206 [DOI: 10.1016/j.rse.2016.04.001http://dx.doi.org/10.1016/j.rse.2016.04.001]
Huang G H, Li X, Ma M G, Li H Y and Huang C L. 2016. High resolution surface radiation products for studies of regional energy, hydrologic and ecological processes over Heihe River Basin, northwest China. Agricultural and Forest Meteorology, 230:67-78. [DOI: 10.1016/j.agrformet.2016.04.007http://dx.doi.org/10.1016/j.agrformet.2016.04.007]
Hubbard S S, Varadharajan C, Wu Y X, Wainwright H and Dwivedi D. 2020. Emerging technologies and radical collaboration to advance predictive understanding of watershed hydrobiogeochemistry. Hydrological Processes, 34(15): 3175-3182 [DOI: 10.1002/hyp.13807http://dx.doi.org/10.1002/hyp.13807]
Jin R, Li X, Ma M G, Ge Y, Liu S M, Xiao Q, Wen J G, Zhao K, Xin X P, Ran Y H, Liu Q H and Zhang R H. 2017. Key methods and experiment verification for the validation of quantitative remote sensing products. Advances in Earth Science, 32(6): 630-642
晋锐, 李新, 马明国, 葛咏, 刘绍民, 肖青, 闻建光, 赵凯, 辛晓平, 冉有华, 柳钦火, 张仁华. 2017. 陆地定量遥感产品的真实性检验关键技术与试验验证. 地球科学进展, 32(6): 630-642 [DOI: 10.11867/j.issn.1001-8166.2017.06.0630http://dx.doi.org/10.11867/j.issn.1001-8166.2017.06.0630]
Jin R, Li X, Yan B P, Li X H, Luo W M, Ma M G, Guo J W, Kang J, Zhu Z L and Zhao S J. 2014. A nested ecohydrological wireless sensor network for capturing the surface heterogeneity in the midstream areas of the Heihe River Basin, China. IEEE Geoscience and Remote Sensing Letters, 11(11): 2015-2019 [DOI: 10.1109/LGRS.2014.2319085http://dx.doi.org/10.1109/LGRS.2014.2319085]
Kang J, Jin R, Li X, Ma C F, Qin J and Zhang Y. 2017. High spatio-temporal resolution mapping of soil moisture by integrating wireless sensor network observations and MODIS apparent thermal inertia in the Babao River Basin, China. Remote Sensing of Environment, 191: 232-245 [DOI: 10.1016/j.rse.2017.01.027http://dx.doi.org/10.1016/j.rse.2017.01.027]
Kang J, Li X, Jin R, Ge Y, Wang J F and Wang J H. 2014. Hybrid optimal design of the eco-hydrological wireless sensor network in the middle reach of the Heihe River Basin, China. Sensors, 14(10): 19095-19114 [DOI: 10.3390/s141019095http://dx.doi.org/10.3390/s141019095]
Li L, Du Y M, Tang Y, Xin X Z, Zhang H L, Wen J G and Liu Q H. 2015a. A new algorithm of FPAR product in the Heihe River Basin Considering the contributions of direct and diffuse solar radiation separately. Remote Sensing, 7(5): 6416-6432 [DOI: 10.3390/rs70506414http://dx.doi.org/10.3390/rs70506414]
Li L, Xin X Z, Zhang H L, Yu J F, Liu Q H, Yu S S and Wen J G. 2015b. A method for estimating hourly photosynthetically active radiation (PAR) in China by combining geostationary and polar-orbiting satellite data. Remote Sensing of Environment, 165: 14-26. [DOI: 10.1016/j.rse.2015.03.034http://dx.doi.org/10.1016/j.rse.2015.03.034]
Li X. 2014. Characterization, controlling, and reduction of uncertainties in the modeling and observation of land-surface systems. Science China Earth Sciences, 57(1): 80-87
李新. 2013. 陆地表层系统模拟和观测的不确定性及其控制. 中国科学: 地球科学, 43(11): 1735-1742 [DOI: 10.1007/s11430-013- 4728-9http://dx.doi.org/10.1007/s11430-013-4728-9]
Li X, Cheng G D, Fu B J, Xia J, Zhang L, Yang D W, Zheng C M, Liu S M, Li X B, Song C Q, Kang S Z, Li X Y, Che T, Zheng Y, Zhou Y Z, Wang H B and Ran Y H. 2022. Linking critical zone with watershed science: the example of the Heihe River Basin. Earth's Future, 10(11): e2022EF002966 [DOI: 10.1029/2022EF002966http://dx.doi.org/10.1029/2022EF002966]
Li X, Cheng G D, Ge Y C, Li H Y, Han F, Hu X L, Tian W, Tian Y, Pan X D, Nian Y Y, Zhang Y L, Ran Y H, Zheng Y, Gao B, Yang D W, Zheng C M, Wang X S, Liu S M and Cai X M. 2018b. Hydrological cycle in the Heihe River Basin and its implication for water resource management in endorheic basins. Journal of Geophysical Research: Atmospheres, 123(2): 890-914 [DOI: 10.1002/2017JD027889http://dx.doi.org/10.1002/2017JD027889]
Li X, Cheng G D, Liu S M, Xiao Q, Ma M G, Jin R, Che T, Liu Q H, Wang W Z, Qi Y, Wen J G, Li H Y, Zhu G F, Guo J W, Ran Y H, Wang S G, Zhu Z L, Zhou J, Hu X L and Xu Z W. 2013. Heihe watershed allied telemetry experimental research (HiWATER): scientific objectives and experimental design. Bulletin of the American Meteorological Society, 94(8): 1145-1160 [DOI: 10.1175/BAMS-D-12-00154.1http://dx.doi.org/10.1175/BAMS-D-12-00154.1]
Li X, Jin R, Liu S M, Ge Y, Xiao Q, Liu Q H, Ma M G and Ran Y H. 2016. Upscaling research in HiWATER: progress and prospects. Journal of Remote Sensing, 20(5): 921-932
李新, 晋锐, 刘绍民, 葛咏, 肖青, 柳钦火, 马明国, 冉有华. 2016. 黑河遥感试验中尺度上推研究的进展与前瞻. 遥感学报, 20(5): 921-932 [DOI: 10.11834/jrs.20166241http://dx.doi.org/10.11834/jrs.20166241]
Li X, Li X W, Li Z Y, Ma M G, Wang J, Xiao Q, Liu Q, Che T, Chen E X, Yan G J, Hu Z Y, Zhang L X, Chu R Z, Su P X, Liu Q H, Liu S M, Wang J D, Niu Z, Chen Y, Jin R, Wang W Z, Ran Y H, Xin X Z and Ren H Z. 2009. Watershed allied telemetry experimental research. Journal of Geophysical Research: Atmospheres, 114(D22): D22103 [DOI: 10.1029/2008JD011590http://dx.doi.org/10.1029/2008JD011590]
Li X, Liu S M, Ma M G, Xiao Q, Liu Q H, Jin R, Che T, Wang W Z, Qi Y, Li H Y, Zhu G F, Guo J W, Ran Y H, Wen J G and Wang S G. 2012. HiWATER: an integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin. Advances in Earth Science, 27(5): 481-498
李新, 刘绍民, 马明国, 肖青, 柳钦火, 晋锐, 车涛, 王维真, 祁元, 李弘毅, 朱高峰, 郭建文, 冉有华, 闻建光, 王树果. 2012. 黑河流域生态-水文过程综合遥感观测联合试验总体设计. 地球科学进展, 27(5): 481-498 [DOI: 10.11867/j.issn.1001-8166.2012.05.0481http://dx.doi.org/10.11867/j.issn.1001-8166.2012.05.0481]
Li X, Liu S M, Li H X, Ma Y F, Wang J H, Zhang Y, Xu Z W, Xu T R, Song L S, Yang X F, Lu Z, Wang Z Y and Guo Z X. 2018a. Intercomparison of six upscaling evapotranspiration methods: from site to the satellite pixel. Journal of Geophysical Research: Atmospheres, 123(13): 6777-6803 [DOI: 10.1029/2018JD028422http://dx.doi.org/10.1029/2018JD028422]
Li X, Liu S M, Liu Q H, Xiao Q, Ma M G, Jin R, Che T, Guo J W, Ran Y H, Wang W Z and Qi Y. 2022. Heihe Watershed Allied Telemetry Experimental Research. Beijing: Science Press
李新, 刘绍民, 柳钦火, 肖青, 马明国, 晋锐, 车涛, 郭建文, 冉有华, 王维真, 祁元. 2022. 黑河生态水文遥感试验. 北京: 科学出版社
Li X, Liu S M, Xiao Q, Ma M G, Jin R, Che T, Wang W Z, Hu X L, Xu Z W, Wen J G and Wang L X. 2017a. A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system. Scientific Data, 4: 170083 [DOI: 10.1038/sdata.2017.83http://dx.doi.org/10.1038/sdata.2017.83]
Li X, Liu S M, Yang X F, Ma Y F, He X L, Xu Z W, Xu T R, Song L S, Zhang Y, Hu X, Ju Q and Zhang X D. 2021. Upscaling evapotranspiration from a single-site to satellite pixel scale. Remote Sensing, 13(20): 4072 [DOI: 10.3390/rs13204072http://dx.doi.org/10.3390/rs13204072]
Li X, Ma M G, Wang J, Liu Q, Che T, Hu Z Y, Xiao Q, Liu Q H, Su P X, Chu R Z, Jin R, Wang W Z and Ran Y H. 2008. Simultaneous remote sensing and ground-based experiment in the Heihe River Basin: scientific objectives and experiment design. Advances in Earth Science, 23(9): 897-914
李新, 马明国, 王建, 刘强, 车涛, 胡泽勇, 肖青, 柳钦火, 苏培玺, 楚荣忠, 晋锐, 王维真, 冉有华. 2008. 黑河流域遥感—地面观测同步试验: 科学目标与试验方案. 地球科学进展, 23(9): 897-914 [DOI: 10.11867/j.issn.1001-8166.2008.09.0897http://dx.doi.org/10.11867/j.issn.1001-8166.2008.09.0897]
Li X, Yang K and Zhou Y Z. 2016. Progress in the study of oasis-desert interactions. Agricultural and Forest Meteorology, 230-231: 1-7 [DOI: 10.1016/j.agrformet.2016.08.022http://dx.doi.org/10.1016/j.agrformet.2016.08.022]
Li X W, Wang J D, Hu B X and Strahler A H. 1998. Role of prior knowledge in remote sensing inversion. Science in China(Series D), 28(1): 67-72
李小文, 王锦地, 胡宝新, Strahler A H. 1998. 先验知识在遥感反演中的作用. 中国科学(D辑), 28(1): 67-72
Li X W and Wang Y T. 2013. Prospects on future developments of quantitative remote sensing. Acta Geographica Sinica, 68(9): 1163-1169
李小文, 王祎婷. 2013. 定量遥感尺度效应刍议. 地理学报, 68(9): 1163-1169 [DOI: 10.11821/dlxb201309001http://dx.doi.org/10.11821/dlxb201309001]
Li Y, Huang C L, Hou J L, Gu J, Zhu G F and Li X. 2017. Mapping daily evapotranspiration based on spatiotemporal fusion of ASTER and MODIS images over irrigated agricultural areas in the Heihe River Basin, Northwest China. Agricultural and Forest Meteorology, 244-245: 82-97 [DOI: 10.1109/IGARSS.2017http://dx.doi.org/10.1109/IGARSS.2017.8127975]
Li Y, Huang C L, Hou J L, Gu J, Zhu G F and Li X. 2017b. Mapping daily evapotranspiration based on spatiotemporal fusion of ASTER and MODIS images over irrigated agricultural areas in the Heihe River Basin, Northwest China. Agricultural and Forest Meteorology, 244-245: 82-97 [DOI: 10.1016/j.agrformet.2017.05.023http://dx.doi.org/10.1016/j.agrformet.2017.05.023]
Liu F and Li X. 2017. Formulation of scale transformation in a stochastic data assimilation framework. Nonlinear Processes in Geophysics, 24(2): 279-291 [DOI: 10.5194/npg-24-279-2017http://dx.doi.org/10.5194/npg-24-279-2017]
Liu F, Zhao Z B and Li X. 2022. Quantifying the representativeness errors caused by scale transformation of remote sensing data in stochastic ensemble data assimilation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15: 1968-1980 [DOI: 10.1109/JSTARS.2022.3149957http://dx.doi.org/10.1109/JSTARS.2022.3149957]
Liu J, Chai L N, Lu Z, Liu S M, Qu Y Q, Geng D Y, Song Y Z, Guan Y B, Guo Z X, Wang J and Zhu Z L. 2019. Evaluation of SMAP, SMOS-IC, FY3B, JAXA, and LPRM soil moisture products over the Qinghai-Tibet plateau and its surrounding areas. Remote Sensing, 11(7): 792 [DOI: 10.3390/rs11070792http://dx.doi.org/10.3390/rs11070792]
Liu Q, Wang M Y and Zhao Y S. 2010. Assimilation of ASAR data with a hydrologic and semi-empirical backscattering coupled model to estimate soil moisture. Chinese Geographical Science, 20(3): 218-225 [DOI: 10.1007/s11769-010-0218-6http://dx.doi.org/10.1007/s11769-010-0218-6]
Liu Q, Yan C Y, Xiao Q, Yan G J and Fang L. 2012. Separating vegetation and soil temperature using airborne multiangular remote sensing image data. International Journal of Applied Earth Observation and Geoinformation, 17: 66-75 [DOI: 10.1016/j.jag.2011.10.003http://dx.doi.org/10.1016/j.jag.2011.10.003]
Liu Q H, Yan G J, Jiao Z T, Xiao Q, Wen J G, Liang S L, Wang J D, Schaaf C and Strahler A. 2018b. From geometric-optical remote sensing modeling to quantitative remote sensing science—in memory of academician Xiaowen Li. Remote Sensing, 10(11): 1764 [DOI: 10.3390/rs10111764http://dx.doi.org/10.3390/rs10111764]
Liu Q H, Zhong B, Tang P, Zhang H H, Li H Y, Wu S L, Xin X Z, Li J, Jia L, Shan X J, Zhang Z, Wen J G, Du Y M, Li L, Yang A X, Li H, Hu G C, Zhao J, Zhang H L, Yu S S, Dou B C and Wu J J. 2018. Remote sensing data products oriented quantitative computing system—the GSC Best Practice Data Computing Environment 2018. Journal of Global Change Data and Discovery, 2(3): 271-278
柳钦火, 仲波, 唐娉, 张宏海, 李宏益, 吴善龙, 辛晓洲, 李静, 贾立, 单小军, 张正, 闻建光, 杜永明, 李丽, 杨爱霞, 历华, 胡光成, 赵静, 张海龙, 余珊珊, 窦宝成, 吴俊君. 2018. 多源协同定量遥感产品生产系统——2018年中国地理学会地理大数据计算环境"优秀实用案例". 全球变化数据学报, 2(3): 271-278 [DOI: 10.3974/geodp.2018.03.04http://dx.doi.org/10.3974/geodp.2018.03.04]
Liu R, Liu S M, Yang X F, Lu H, Pan X D, Xu Z W, Ma Y F and Xu T R. 2018c. Wind dynamics over a highly heterogeneous oasis area: an experimental and numerical study. Journal of Geophysical Research: Atmospheres, 123(16): 8418-8440 [DOI: 10.1029/2018JD028397http://dx.doi.org/10.1029/2018JD028397]
Liu R, Sogachev A, Yang X F, Liu S M, Xu T R and Zhang J J. 2020. Investigating microclimate effects in an oasis-desert interaction zone. Agricultural and Forest Meteorology, 290: 107992 [DOI: 10.1016/j.agrformet.2020.107992http://dx.doi.org/10.1016/j.agrformet.2020.107992]
Liu S M, Li X, Xu Z W, Che T, Xiao Q, Ma M G, Liu Q H, Jin R, Guo J W, Wang L X, Wang W Z, Qi Y, Li H Y, Xu T R, Ran Y H, Hu X L, Shi S J, Zhu Z L, Tan J L, Zhang Y and Ren Z G. 2018a. The Heihe integrated observatory network: a basin-scale land surface processes observatory in China. Vadose Zone Journal, 17: 180072 [DOI: 10.2136/vzj2018.04.0072http://dx.doi.org/10.2136/vzj2018.04.0072]
Liu S M, Xu Z W, Song L S, Zhao Q Y, Ge Y, Xu T R, Ma Y F, Zhu Z L, Jia Z Z and Zhang F. 2016. Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agricultural and Forest Meteorology, 230-231: 97-113 [DOI: 10.1016/j.agrformet.2016.04.008http://dx.doi.org/10.1016/j.agrformet.2016.04.008]
Liu S M, Xu Z W, Wang W Z, Jia Z Z, Zhu M J, Bai J and Wang J M. 2011. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrology and Earth System Sciences, 15(4): 1291-1306 [DOI: 10.5194/hess-15-1291-2011http://dx.doi.org/10.5194/hess-15-1291-2011]
Ma C F, Wang W Z, Han X J and Li X. 2013. Soil Moisture Retrieval in the Heihe River Basin Based on the Real Thermal Inertia Method. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3): 1460-1467 [DOI: 10.1109/JSTARS.2013.2252149http://dx.doi.org/10.1109/JSTARS.2013.2252149]
Ma M G, Che T, Li X, Xiao Q, Zhao K and Xin X P. 2015. A prototype network for remote sensing validation in China. Remote Sensing, 7(5): 5187-5202 [DOI: 10.3390/rs70505187http://dx.doi.org/10.3390/rs70505187]
Ma Y F, Liu S M, Song L S, Xu Z W, Liu Y L, Xu T R and Zhu Z L. 2018. Estimation of daily evapotranspiration and irrigation water efficiency at a Landsat-like scale for an arid irrigation area using multi-source remote sensing data. Remote Sensing of Environment, 216: 715-734. [DOI: 10.1016/j.rse.2018.07.019http://dx.doi.org/10.1016/j.rse.2018.07.019]
Mauder M, Foken T and Cuxart J. 2020. Surface-energy-balance closure over land: a review. Boundary-Layer Meteorology, 177(2): 395-426 [DOI: 1007/s10546-020-00529-6http://dx.doi.org/1007/s10546-020-00529-6]
Mu X H, Huang S, Ren H Z, Yan G J, Song W J and Ruan G Y, 2015, Validating GEOV1 Fractional Vegetation Cover Derived From Coarse-resolution Remote Sensing Images Over Croplands. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(2): 439-446 [DOI: 10.1109/JSTARS.2014.2342257]
Mu X H, Liu Y K, Yan G J and Yao Y J. 2010. Fractional vegetation cover retrieval using multi-spatial resolution data and plant growth model. IEEE International Geoscience and Remote Sensing Symposium, 241-244 [DOI: 10.1109/IGARSS.2010.5650399http://dx.doi.org/10.1109/IGARSS.2010.5650399]
Pan X D, Li X, Cheng G D and Hong Y. 2017. Effects of 4D-Var data assimilation using remote sensing precipitation products in a WRF model over the complex terrain of an arid region River Basin. Remote Sensing, 9(9): 963 [DOI: 10.3390/rs9090963http://dx.doi.org/10.3390/rs9090963]
Pan X D, Tian X J, Li X, Xie Z H, Shao A and Lu C Y. 2012. Assimilating Doppler radar radial velocity and reflectivity observations in the WRF model by a POD-based ensemble three-dimensional variational assimilation method. Journal of Geophysical Research, 117 [DOI: 10.1029/2012JD017684http://dx.doi.org/10.1029/2012JD017684]
Qu Y H, Zhu Y Q, Han W C, Wang J D and Ma M G. 2014. Crop leaf area index observations with a wireless sensor network and its potential for validating remote sensing products. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(2): 431-444 [DOI: 10.1109/JSTARS.2013.2289931http://dx.doi.org/10.1109/JSTARS.2013.2289931]
Qu Y Q, Zhu Z L, Chai L N, Liu S M, Montzka C, Liu J, Yang X F, Lu Z, Jin R, Li X, Guo Z X and Zheng J. 2019. Rebuilding a microwave soil moisture product using random forest adopting AMSR-E/AMSR2 brightness temperature and SMAP over the Qinghai-Tibet Plateau, China. Remote sensing, 11(6): 683 [DOI: 10.3390/rs11060683http://dx.doi.org/10.3390/rs11060683]
Ren H Z, Liu R Y, Yan G J, Li Z L, Qin Q M, Liu Q and Nerry F. 2015. Performance evaluation of four directional emissivity analytical models with thermal SAIL model and airborne images. Optics Express, 23(7): A346-A360 [DOI: 10.1364/OE.23.00A346http://dx.doi.org/10.1364/OE.23.00A346]
Sanz-Alonso D, Stuart A M and Taeb A. 2022. Inverse problems and data assimilation. arXiv preprint arXiv: 1810.06191 [DOI: 10.48550/arXiv.1810.06191http://dx.doi.org/10.48550/arXiv.1810.06191]
Song L S, Bian Z J, Kustas W P, Liu S M, Xiao Q, Nieto H, Xu Z W, Yang Y, Xu T R and Han X J. 2020. Estimation of surface heat fluxes using multi-angular observations of radiative surface temperature. Remote Sensing of Environment, 239: 111674 [DOI: 10.1016/j.rse.2020.111674http://dx.doi.org/10.1016/j.rse.2020.111674]
Song L S, Liu S M, Kustas W P, Nieto H, Sun L, Xu Z W, Skaggs T H, Yang Y, Ma M G, Xu T R, Tang X G and Li Q P. 2018. Monitoring and validating spatially and temporally continuous daily evaporation and transpiration at river basin scale. Remote sensing of Environment, 219: 72-88 [DOI: 10.1016/j.rse.2018.10.002http://dx.doi.org/10.1016/j.rse.2018.10.002]
Song L S, Liu S M, Kustas W P, Zhou J, Xu Z W, Xia T and Li M S. 2016. Application of remote sensing-based two-source energy balance model for mapping field surface fluxes with composite and component surface temperatures. Agricultural and Forest Meteorology, 230-231: 8-19 [DOI: 10.1016/j.agrformet.2016.01.005http://dx.doi.org/10.1016/j.agrformet.2016.01.005]
Sun S B, Che T, Gentine P, Chen Q T, Wang L C, Yan Z F, Chen B Z and Song Z L. 2021. Shallow groundwater inhibits soil respiration and favors carbon uptake in a wet alpine meadow ecosystem. Agricultural and Forest Meteorology, 297: 108254 [DOI: 10.1016/j.agrformet.2020.108254http://dx.doi.org/10.1016/j.agrformet.2020.108254]
Vereecken H, Huisman J A, Hendricks Franssen H J, Brüggemann N, Bogena H R, Kollet S, Javaux M, van der Kruk J and Vanderborght J. 2015. Soil hydrology: recent methodological advances, challenges, and perspectives. Water Resources Research, 51(4): 2616-2633 [DOI: 10.1002/2014WR016852http://dx.doi.org/10.1002/2014WR016852]
Wang C, Li J, Liu Q H, Zhong B, Wu S L and Xia C F. 2017. Analysis of differences in phenology extracted from the enhanced vegetation index and the leaf area index. Sensors 17(9): 1982 [DOI: 10.3390/s17091982http://dx.doi.org/10.3390/s17091982]
Wang H B, Li X, Xiao J F and Ma M G. 2021. Evapotranspiration components and water use efficiency from desert to alpine ecosystems in drylands. Agricultural and Forest Meteorology, 298-299: 108283 [DOI: 10.1016/j.agrformet.2020.108283http://dx.doi.org/10.1016/j.agrformet.2020.108283]
Wang H B, Li X, Xiao J F, Ma M G, Tan J L, Wang X F and Geng L Y. 2019. Carbon fluxes across alpine, oasis, and desert ecosystems in northwestern China: the importance of water availability. Science of the Total Environment, 697: 133978 [DOI: 10.1016/j.scitotenv.2019.133978http://dx.doi.org/10.1016/j.scitotenv.2019.133978]
Wang J, Li X, Lu L and Fang F. 2013. Estimating near future regional corn yields by integrating multi-source observations into a crop growth model. European Journal of Agronomy, 49: 126-140 [DOI: 10.1016/j.eja.2013.03.005http://dx.doi.org/10.1016/j.eja.2013.03.005]
Wang J H, Ge Y, Heuvelink G B M and Zhou C H. 2014. Spatial sampling design for estimating regional GPP with spatial heterogeneities. IEEE Geoscience and Remote Sensing Letters, 11(2): 539-543 [DOI: 10.1109/LGRS.2013.2274453http://dx.doi.org/10.1109/LGRS.2013.2274453]
Wang J H, Ge Y, Heuvelink G B M and Zhou C H. 2015. Upscaling in situ soil moisture observations to pixel averages with spatio-temporal geostatistics. Remote Sensing, 7(9): 11372-11388 [DOI: 10.3390/rs70911372http://dx.doi.org/10.3390/rs70911372]
Wang J M, Liu X H and Qi Y Q. 1990. A preliminary study of turbulence transfer characteristics in Gobi area with an eddy correlation technique. Plateau Meteorology, 9(2): 120-129
王介民, 刘晓虎, 祁永强. 1990. 应用涡旋相关方法对戈壁地区湍流输送特征的初步研究. 高原气象, 9(2): 120-129
Wang J M, Wang W Z, Liu S M, Ma M G and Li X. 2009. The problems of surface energy balance closure—An overview and case study. Advances in Earth Science, 24(7): 705-713
王介民, 王维真, 刘绍民, 马明国, 李新. 2009. 近地层能量平衡闭合问题——综述及个例分析. 地球科学进展, 24(7): 705-713 [DOI: 10.3321/j.issn:1001-8166.2009.07.003http://dx.doi.org/10.3321/j.issn:1001-8166.2009.07.003]
Wang W Z, Xu Z W, Li X, Wang J M and Zhang Z H. 2010. A study of applications of large aperture scintillometer in the Heihe river basin. Advances in Earth Science, 25(11): 1208-1216
王维真, 徐自为, 李新, 王介民, 张智慧. 2010. 大孔径闪烁仪在黑河流域的应用分析研究. 地球科学进展, 25(11): 1208-1216 [DOI: 10.11867/j.issn.1001-8166.2010.11.1208http://dx.doi.org/10.11867/j.issn.1001-8166.2010.11.1208]
Wen J G, Dou B C, You D Q, Tang Y, Xiao Q, Liu Q and Liu Q H. 2017. Forward a small-timescale BRDF/albedo by multisensor combined BRDF inversion model. IEEE Transactions on Geoscience and Remote Sensing, 55(2): 683-697 [DOI: 10.1109/TGRS.2016.2613899http://dx.doi.org/10.1109/TGRS.2016.2613899]
Wen J G, Liu Q, Xiao Q, Liu Q H, You D Q, Hao D L, Wu S B and Lin X W. 2018. Characterizing land surface anisotropic reflectance over rugged terrain: a review of concepts and recent developments. Remote Sensing, 10(3): 370 [DOI: 10.3390/rs10030370http://dx.doi.org/10.3390/rs10030370]
Wen J G, Wu X D, Wang J P, Tang R Q, Ma D J, Zeng Q C, Gong B C and Xiao Q. 2022b. Characterizing the effect of spatial heterogeneity and the deployment of sampled plots on the uncertainty of ground “Truth” on a coarse grid scale: case study for near-infrared (NIR) surface reflectance. Journal of Geophysical Research: Atmospheres, 127(11): e2022JD036779 [DOI: 10.1029/2022JD036779http://dx.doi.org/10.1029/2022JD036779]
Wen J G, You D Q, Han Y, Lin X W, Wu S B, Tang Y, Xiao Q and Liu Q H. 2022a. Estimating surface BRDF/Albedo over rugged terrain using an extended multisensor combined BRDF inversion (EMCBI) model. IEEE Geoscience and Remote Sensing Letters, 19: 2503505 [DOI: 10.1109/LGRS.2022.3143197http://dx.doi.org/10.1109/LGRS.2022.3143197]
Wen J G, Zhao X J, Liu Q, Tang Y and Dou B C. 2014. An improved land-surface albedo algorithm with DEM in rugged terrain. IEEE Geoscience and Remote Sensing Letters, 11(4): 883-887 [DOI: 10.1109/LGRS.2013.2280696http://dx.doi.org/10.1109/LGRS.2013.2280696]
Wu B F, Yan N N, Xiong J, Bastiaanssen W G M, Zhu W W and Stein A. 2012. Validation of ETWatch using field measurements at diverse landscapes: A case study in Hai Basin of China. Journal of Hydrology, 436: 67-80 [DOI: 10.1016/j.jhydrol.2012.02.043http://dx.doi.org/10.1016/j.jhydrol.2012.02.043]
Wu B F, Xiong J and Yan N N. 2011. ETWatch: models and methods. Journal of Remote Sensing, 15(2): 224-239
吴炳方, 熊隽, 闫娜娜. 2011. ETWatch的模型与方法. 遥感学报, 15(2): 224-239
Wu S B, Wen J G, Gastellu-Etchegorry J P, Liu Q H, You D Q, Xiao Q, Hao D L, Lin X W and Yin T G. 2019a. The definition of remotely sensed reflectance quantities suitable for rugged terrain. Remote sensing of Environment, 225: 403-415 [DOI: 10.1016/j.rse.2019.01.005http://dx.doi.org/10.1016/j.rse.2019.01.005]
Wu X D, Wen J G, Xiao Q and You D Q. 2020. Upscaling of single-site-based measurements for validation of long-term coarse-pixel albedo products. IEEE Transactions on Geoscience and Remote Sensing, 58(5): 3411-3425 [DOI: 10.1109/TGRS.2019.2954879http://dx.doi.org/10.1109/TGRS.2019.2954879]
Wu X D, Wen J G, Xiao Q, You D Q, Lin X W, Wu S B and Zhong S Y. 2019b. Impacts and contributors of representativeness errors of in situ albedo measurements for the validation of remote sensing products. IEEE Transactions on Geoscience and Remote Sensing, 57(12): 9740-9755 [DOI: 10.1109/TGRS.2019.2928954http://dx.doi.org/10.1109/TGRS.2019.2928954]
Wu X D, Wen J G, Xiao Q, You D Q, Liu Q and Lin X W. 2018. Forward a spatio-temporal trend surface for long-term ground-measured albedo upscaling over heterogeneous land surface. International Journal of Digital Earth, 11(5): 470-484 [DOI: 10.1080/17538947.2017.1334097http://dx.doi.org/10.1080/17538947.2017.1334097]
Wu X D, Wen J G, Xiao Q, You D Q, Wang J P, Ma D J and Lin X W. 2021. A multiscale nested sampling method for representative albedo observations at various pixel scales. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 8193-8207 [DOI: 10.1109/JSTARS.2021.3105562http://dx.doi.org/10.1109/JSTARS.2021.3105562]
Xu T R, He X L, Bateni S M, Auligne T, Liu S M, Xu Z W, Zhou J and Mao K B. 2019. Mapping regional turbulent heat fluxes via variational assimilation of land surface temperature data from polar orbiting satellites. Remote Sensing of Environment, 221: 444-461 [DOI: 10.1016/j.rse.2018.11.023http://dx.doi.org/10.1016/j.rse.2018.11.023]
Xu T R, Guo Z X, Liu S M, He X L, Meng Y F Y, Xu Z W, Xia Y L, Xiao J F, Zhang Y, Ma Y F and Song L S. 2018. Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale. Journal of Geophysical Research: Atmospheres, 123(16): 8674-8690 [DOI: 10.1029/2018JD028447http://dx.doi.org/10.1029/2018JD028447]
Xu Z W, Liu S M, Li X, Shi S J, Wang J M, Zhu Z L, Xu T R, Wang W Z and Ma M G. 2013. Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE. Journal of Geophysical Research: Atmospheres, 118(23): 13140-13157 [DOI: 10.1002/2013JD020260http://dx.doi.org/10.1002/2013JD020260]
Xu Z W, Liu S M, Zhu Z L, Zhou J, Shi W J, Xu T R, Yang X F, Zhang Y and He X L. 2020. Exploring evapotranspiration changes in a typical endorheic basin through the integrated observatory network. Agricultural and Forest Meteorology, 290: 108010 [DOI: 10.1016/j.agrformet.2020.108010http://dx.doi.org/10.1016/j.agrformet.2020.108010]
Xu Z W, Ma Y F, Liu S M, Shi W J and Wang J M. 2017. Assessment of the energy balance closure under advective conditions and its impact using remote sensing data. Journal of Applied Meteorology and Climatology, 56(1): 127-140 [DOI: 10.1175/JAMC-D-16-0096.1http://dx.doi.org/10.1175/JAMC-D-16-0096.1]
Xu Z W, Zhu Z L, Liu S M, Song L S, Wang X C, Zhou S, Yang X F and Xu T R. 2021. Evapotranspiration partitioning for multiple ecosystems within a dryland watershed: seasonal variations and controlling factors. Journal of Hydrology, 598: 126483 [DOI: 10.1016/j.jhydrol.2021.126483http://dx.doi.org/10.1016/j.jhydrol.2021.126483]
Yin G F, Li J, Liu Q H, Li L H, Zeng Y L, Xu B D, Yang L and Zhao J. 2015. Improving leaf area index retrieval over heterogeneous surface by integrating textural and contextual information: a case study in the Heihe River Basin. IEEE Geoscience and Remote Sensing Letters, 12(2): 359-363 [DOI: 10.1109/LGRS.2014.2341925http://dx.doi.org/10.1109/LGRS.2014.2341925]
You D Q, Wen J G, Xiao Q, Liu Q, Liu Q H, Tang Y, Dou B C and Peng J J. 2015. Development of a high resolution BRDF/Albedo product by fusing airborne CASI reflectance with MODIS daily reflectance in the oasis area of the Heihe River Basin, China. Remote Sensing, 7(6): 6784-6807 [DOI: 10.3390/rs70606784http://dx.doi.org/10.3390/rs70606784]
Zeng Y L, Li J, Liu Q H, Huete A R, Yin G F, Xu B D, Fan W L, Zhao J, Yan K and Mu X H. 2016. A radiative transfer model for heterogeneous agro-forestry scenarios. IEEE Transactions on Geoscience and Remote Sensing, 54(8): 4613-4628 [DOI: 10.1109/TGRS.2016.2547326http://dx.doi.org/10.1109/TGRS.2016.2547326]
Zhang Y, Jia Z Z, Liu S M, Xu Z W, Xu T R, Yao Y J, Ma Y F, Song L S, Li X, Hu X, Wang Z Y, Guo Z X and Zhou J. 2020. Advances in validation of remotely sensed land surface evapotranspiration. Journal of Remote Sensing, 24(8): 975-999
张圆, 贾贞贞, 刘绍民, 徐自为, 徐同仁, 姚云军, 马燕飞, 宋立生, 李相, 胡骁, 王泽宇, 郭枝虾, 周纪. 2020. 遥感估算地表蒸散发真实性检验研究进展. 遥感学报, 24(8): 975-999 [DOI: 10.11834/jrs.20209099http://dx.doi.org/10.11834/jrs.20209099]
Zhang Y, Liu S M, Song L S, Li X, Jia Z Z, Xu T R, Xu Z W, Ma Y F, Zhou J, Yang X F, He X L, Yao Y J and Hu G C. 2022. Integrated validation of coarse remotely sensed evapotranspiration products over heterogeneous land surfaces. Remote Sensing, 14(14): 3467 [DOI: 10.3390/rs14143467http://dx.doi.org/10.3390/rs14143467]
Zhao J, Li J, Liu Q H, Fan W J, Zhong B, Wu S L, Yang L, Zeng Y L, Xu B D and Yin G F. 2015. Leaf area index retrieval combining HJ1/CCD and Landsat8/OLI data in the Heihe River Basin, China. Remote Sensing, 7(6): 6862-6885. [DOI: 10.3390/rs70606862http://dx.doi.org/10.3390/rs70606862]
Zhao Q, Hao X H, Wang J, Luo S Q, Shao D H, Li H Y, Feng T W and Zhao H Y. 2022. Snow Cover Phenology Change and Response to Climate in China during 2000—2020. Remote Sensing, 14(16): 3936 [DOI: 10.3390/rs14163936http://dx.doi.org/10.3390/rs14163936]
Zheng C, Liu S M, Song L S, Xu Z W, Guo J X, Ma Y F, Ju Q and Wang J M. 2023. Comparison of sensible and latent heat fluxes from optical-microwave scintillometers and eddy covariance systems with respect to surface energy balance closure. Agricultural and Forest Meteorology, 331, 109345 [DOI: 10.1016/j.agrformet.2023.109345]
Zhong B, Ma P, Nie A H, Yang A X, Yao Y J, Lü W B, Zhang H and Liu Q H. 2014. Land cover mapping using time series HJ-1/CCD data. Science China Earth Sciences, 57(8): 1790-1799 [DOI: 10.1007/s11430-014-4877-5http://dx.doi.org/10.1007/s11430-014-4877-5]
Zhong B, Yang A, Nie A, Yao Y, Zhang H, Wu S and Liu Q. 2015. Finer resolution land-cover mapping using multiple classifiers and multisource remotely sensed data in the Heihe River Basin. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(10): 4973-4992 [DOI: 10.1109/JSTARShttp://dx.doi.org/10.1109/JSTARS.2015.2461453]
Zhong B, Yang A X, Nie A H, Yao Y J, Zhang H, Wu S L and Liu Q H. 2015. Finer resolution land-cover mapping using multiple classifiers and multisource remotely sensed data in the Heihe River Basin. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(10): 4973-4992 [DOI: 10.1109/JSTARS.2015.2461453http://dx.doi.org/10.1109/JSTARS.2015.2461453]
Zhou Y Z, Li D and Li X. 2019. The effects of surface heterogeneity scale on the flux imbalance under free convection. Journal of Geophysical Research: Atmospheres, 124(15): 8424-8448 [DOI: 10.1029/2018JD029550http://dx.doi.org/10.1029/2018JD029550]
Zhou Y Z, Li D, Liu H P and Li X. 2018. Diurnal variations of the flux imbalance over homogeneous and heterogeneous landscapes. Boundary-Layer Meteorology, 168(3): 417-442 [DOI: 007/s10546-018-0358-2http://dx.doi.org/007/s10546-018-0358-2]
Zhou Y Z and Li X. 2018. Progress in the energy closure of eddy covariance systems. Advances in Earth Science, 33(9): 898-913
周彦昭, 李新. 2018. 涡动相关能量闭合问题的研究进展. 地球科学进展, 33(9): 898-913 [DOI: 10.11867/j.issn.1001-8166.2018.09.0898http://dx.doi.org/10.11867/j.issn.1001-8166.2018.09.0898]
Zhu Y Y, Xie W J and Huang H G. 2018. Modeling sensible flux and latent flux in Heihe and boreal forests based on a 3D ENVI-met model. Journal of Zhejiang A and F University, 35(3): 440-452
朱宇颐, 解潍嘉, 黄华国. 2018. 基于三维模型ENVI-met对黑河森林和北方森林的潜热及显热通量模拟. 浙江农林大学学报, 35(3): 440-452
Zhu Z L, Tan L, Gao S G and Jiao Q S. 2015. Observation on soil moisture of irrigation cropland by cosmic-ray probe. IEEE Geoscience and Remote Sensing Letters, 12(3): 472-476 [DOI: 10. 1109/LGRS. 2014. 2346784http://dx.doi.org/10.1109/LGRS.2014.2346784]
相关作者
相关机构