基于无人机智能基站的空地协同低空无人机遥感网构建及应用
Development and applications of the UAV remote sensing network based on the intelligent UAV base station
- 2023年27卷第2期 页码:209-223
纸质出版日期: 2023-02-07
DOI: 10.11834/jrs.20235014
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2023-02-07 ,
扫 描 看 全 文
荆文龙,周成虎,李勇,杨骥,潘屹峰,黄吴蒙,邓应彬,赵晓丹.2023.基于无人机智能基站的空地协同低空无人机遥感网构建及应用.遥感学报,27(2): 209-223
Jing W L,Zhou C H, Li Y, Yang J, Pan Y F, Huang W M, Deng Y B and Zhao X D. 2023. Development and applications of the UAV remote sensing network based on the intelligent UAV base station. National Remote Sensing Bulletin, 27(2):209-223
无人机可以灵活、高效地获取地表要素信息,近年来轻小型民用无人机广泛普及,无人机遥感与行业应用的结合不断深入。随着科技的进步,无人机载荷、通信、数据处理等技术取得了快速发展,同时,由于续航时间和覆盖范围有限,无人机在自然资源、生态环境、社会治理中的应用也面临着困难和挑战。本文针对低空无人机组网观测的关键问题,提出了智能无人机、无人机基站和运营系统组成的空地协同低空无人机遥感网系统,通过无人机智能基站实现无人机高频次观测,通过运营系统实现多无人机自主协同作业,通过智能无人机实现智能化监测。研究成果在佛山市丹灶镇开展示范应用,构建了由8台无人机智能基站组成的低空无人机遥感网,通过5G网联无人机组网,打破传统无人机作业在巡查频率、覆盖范围、响应时间的限制,为当地水务、环保、公安、应急、城管、国土等部门提供高频次、全天时、快速响应的无人机智能巡查服务。本文提出了一种空地协同的低空无人机遥感网系统,并成功应用于国土、交通、生态环境等领域,打造了无人机遥感网驱动的智慧城镇模式,未来将与地理空间智能、物联网等技术深度融合,构建立体化无人机遥感网和智能运营平台,并在全国开展低空无人机遥感网的示范应用。
Unmanned Aerial Vehicles (UAVs) could flexibly and efficiently observe land surface and obtain surface information at very high frequency and resolutions. In recent years
UAV technology has been greatly improved and the UAVs are increasingly applied in large amount of civilian fields. The UAV Remote Sensing (UAVRS) is a comprehensive technology composed of UAV flying aircraft
light remote sensing payload
satellite positioning device
remote-control system
communication technology and application technology. An UAVRS system is mainly composed of UAV platform
load system
ground control and data transmission system and image processing system. With the popularity of civilian UAV products and the development of UAV remote sensing payload
UAVRS also shows an explosive growth trend in various industries. However
the short battery life and limited coverage of the civilian drones are one of the key factors restricting the UAVRS applications. Besides
although the application of UAVs in various industries and fields continues to deepen
most of them are single-type applications in a certain discipline or industry. The 5G technology and wireless communication technology advance and will give rise to the UAVRS applications in terms of “networking”
“IoT”
and “real-time”
as well as cross-domain and convergence application. The modern cities are highly complex and sociotechnical. They comprise people and communities interacting with one another and with objects (e.g.
roads
buildings) within a range of urban settings or contexts. It is extremely difficult to monitor and manage such complex sociotechnical systems. The monitoring and mapping of pollutions
traffic
infrastructures are great challenges in rapidly changing cities
and especially gained increasing attentions of citizens and are putting great stresses on policy makers and urban planners. Theoretical and practical efforts to create better city monitoring and management systems have a long history. In the 21st century
we recognize and conceive “creative”
“smart” and “knowledge” cities
in which the multidisciplinary Information and Information and Communication Technology (ICT) has played a vital role. The Internet of Things (IoT) promotes the development of the smart cities. However
in various urban domains
the cities equipped with a sensor-based web
or a cyber-physical information infrastructure
are far from sufficient to help policy makers or citizens to get a full understanding of the real time or near real time city conditions. To this end
due to their mobility
autonomous operation
and communication/processing capabilities
UAVs are envisaged in many smart city application domains. In this article
we describe a technology of air-ground collaborative low-altitude UAV remote sensing network system. The system composes of intelligent UAV
the UAV base station (drone-in box) and operation system. The UAV remote sensing network can provide high-frequency and real-time observations of the land surface. Based on the UAV remote sensing network
we constructed a comprehensive application for urban governance. An UAVRS network composed of eight UAV base stations was deployed in Danzao Town
Foshan City. Connected through 5G network
the UAVRS network advances the UAV inspection frequency
spatial coverage
and response time. It provides revolutionary and intelligent services for local agents and departments of water affairs
environment protection
public security
urban management
and emergency. The UAVRS network system in Danzao is expected to develop a real-world smart city paradigm that could be copied and migrated to other towns across the country.
无人机无人机智能基站无人机遥感网空地协同
UAVUAV base stationUAV remote sensing networkair-ground collaborate
Abdelmaboud A. 2021. The internet of drones: requirements, taxonomy, recent advances, and challenges of research trends. Sensors, 21(17): 5718 [DOI: 10.3390/s21175718http://dx.doi.org/10.3390/s21175718]
Alam S, Natesha B V, Ashwin T S and Guddeti R M R. 2019. UAV based cost-effective real-time abnormal event detection using edge computing. Multimedia Tools and Applications, 78(24): 35119-35134 [DOI: 10.1007/s11042-019-08067-1http://dx.doi.org/10.1007/s11042-019-08067-1]
Barthélemy J, Verstaevel N, Forehead H and Perez P. 2019. Edge-computing video analytics for real-time traffic monitoring in a smart city. Sensors, 19(9): 2048 [DOI: 10.3390/s19092048http://dx.doi.org/10.3390/s19092048]
Bergkvist A, Burnett D C, Jennings C and Narayanan A. 2012. WebRTC 1.0: Real-Time Communication Between Browsers. W3C
Chen N C, Xiao C J, Yang C and Wang W. 2020. Technology and application of the fusion service of geospatial sensor web. Journal of Geo-Information Science, 22(1): 11-20
陈能成, 肖长江, 杨超, 王伟. 2020. 地理空间传感网融合服务技术与应用. 地球信息科学学报, 22(1): 11-20 [DOI: 10.12082/dqxxkx.2020.190479http://dx.doi.org/10.12082/dqxxkx.2020.190479]
Colomina I and Molina P. 2014. Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS Journal of Photogrammetry and Remote Sensing, 92: 79-97 [DOI: 10.1016/j.isprsjprs.2014.02.013http://dx.doi.org/10.1016/j.isprsjprs.2014.02.013]
Fan B K and Zhang R Y. 2017. Unmanned aircraft system and artificial intelligence. Geomatics and Information Science of Wuhan University, 42(11): 1523-1529
樊邦奎, 张瑞雨. 2017. 无人机系统与人工智能. 武汉大学学报(信息科学版), 42(11): 1523-1529 [DOI: 10.13203/j.whugis20170177http://dx.doi.org/10.13203/j.whugis20170177]
Fielding R. 1999. Hypertext Transfer Protocol-HTTP/1.1. RFC 2616
Ge X J, Huang B, Yuan Z J, Wang D D, Wang Q Q, Chen J C and Xie Z Y. 2022. Temporal and spatial variation characteristics and source analysis of agricultural non-point source pollution load in Guangdong during the past 20 years. Environmental Science, 43(6): 3118-3127
葛小君, 黄斌, 袁再健, 王栋栋, 王泉泉, 陈佳村, 谢真越. 2022. 近20年来广东省农业面源污染负荷时空变化与来源分析. 环境科学, 43(6): 3118-3127 [DOI: 10.13227/j.hjkx.202108071http://dx.doi.org/10.13227/j.hjkx.202108071]
Gharibi M, Boutaba R and Waslander S L. 2016. Internet of drones. IEEE Access, 4: 1148-1162 [DOI: 10.1109/ACCESS.2016.2537208http://dx.doi.org/10.1109/ACCESS.2016.2537208]
Gien M. 1978. A file transfer protocol (FTP). Computer Networks, 2(4/5): 312-319 [DOI: 10.1016/0376-5075(78)90009-0http://dx.doi.org/10.1016/0376-5075(78)90009-0]
Guo Q H, Hu T Y, Liu J, Jin S C, Xiao Q, Yang G J, Gao X L, Xu Q, Xie P H, Peng C G and Yan L. 2021. Advances in light weight unmanned aerial vehicle remote sensing and major industrial applications. Progress in Geography, 40(9): 1550-1569
郭庆华, 胡天宇, 刘瑾, 金时超, 肖青, 杨贵军, 高显连, 许强, 谢品华, 彭炽刚, 闫利. 2021. 轻小型无人机遥感及其行业应用进展. 地理科学进展, 40(9): 1550-1569 [DOI: 10.18306/dlkxjz.2021.09.010http://dx.doi.org/10.18306/dlkxjz.2021.09.010]
Gupta L, Jain R and Vaszkun G. 2016. Survey of important issues in UAV communication networks. IEEE Communications Surveys and Tutorials, 18(2): 1123-1152 [DOI: 10.1109/COMST.2015.2495297http://dx.doi.org/10.1109/COMST.2015.2495297]
Li D R and Li M. 2014. Research advance and application prospect of unmanned aerial vehicle remote sensing system. Geomatics and Information Science of Wuhan University, 39(5): 505-513, 540
李德仁, 李明. 2014. 无人机遥感系统的研究进展与应用前景. 武汉大学学报(信息科学版), 39(5): 505-513, 540 [DOI: 10.13203/j.whugis20140045http://dx.doi.org/10.13203/j.whugis20140045]
Li D R, Wnag M and Hu F. 2009. Utilizing Chinese high-resolution satellite images for inspection of unauthorized constructions in Beijing. Chinese Science Bulletin, 54(14): 2524-2534
李德仁, 王密, 胡芬. 2009. 利用我国高分辨率卫星影像监测北京市违章建筑. 科学通报, 54(3): 305-311 [DOI: 10.1007/s11434-009-0111-9http://dx.doi.org/10.1007/s11434-009-0111-9]
Liang S Y, Wu H, Zhen L, Hua Q Z, Garg S, Kaddoum G, Hassan M M and Yu K P. 2022. Dge YOLO: real-time intelligent object detection system based on edge-cloud cooperation in autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems, 23(12): 25345-25360 [DOI: 10.1109/TITS.2022.3158253http://dx.doi.org/10.1109/TITS.2022.3158253]
Liao X H, Huang Y H and Xu C C. 2021. Views on the study of low-altitude airspace resources for UAV applications. Acta Geographica Sinica, 76(11): 2607-2620
廖小罕, 黄耀欢, 徐晨晨. 2021. 面向无人机应用的低空空域资源研究探讨. 地理学报, 76(11): 2607-2620 [DOI: 10.11821/dlxb202111001http://dx.doi.org/10.11821/dlxb202111001]
Liao X H, Xiao Q and Zhang H. 2019. UAV remote sensing: popularization and expand application development trend. Journal of Remote Sensing, 23(6): 1046-1052
廖小罕, 肖青, 张颢. 2019. 人机遥感: 大众化与拓展应用发展趋势. 遥感学报, 23(6): 1046-1052 [DOI: 10.11834/jrs.20199422http://dx.doi.org/10.11834/jrs.20199422]
Liao X H, Zhou C H, Su F Z, Lu H Y, Yue H Y and Gou J P. 2016. The mass innovation era of UAV remote sensing. Journal of Geo-Information Science, 18(11): 1439-1447
廖小罕, 周成虎, 苏奋振, 卢海英, 岳焕印, 缑吉平. 2016. 无人机遥感众创时代. 地球信息科学学报, 18(11): 1439-1447
Liu J W, Chen P F, Lu M and Liao X H. 2021. Unmanned aerial vehicle airports for verification of common products from China High-resolution Earth Observation System (CHEOS). Acta Geographica Sinica, 76(11): 2621-2631
刘俊伟, 陈鹏飞, 鹿明, 廖小罕. 2021. 面向高分卫星遥感共性产品真实性检验的无人机空港布局. 地理学报, 76(11): 2621-2631 [DOI: 10.11821/dlxb202111002http://dx.doi.org/10.11821/dlxb202111002]
Liu Y H, Guo J P and Wei Q S. 2012. Urban green space landscape patterns and thermal environment investigations based on computational fluid dynamics. Acta Ecologica Sinica, 32(6): 1951-1959
刘艳红, 郭晋平, 魏清顺. 2012. 基于CFD的城市绿地空间格局热环境效应分析. 生态学报, 32(6): 1951-1959 [DOI: 10.5846/stxb201102170183http://dx.doi.org/10.5846/stxb201102170183]
Liu Y M, Deng R R, Qin Y, Cao B, Liang Y H, Liu Y F, Tian J L and Wang S L. 2019. Rapid estimation of bathymetry from multispectral imagery without in situ bathymetry data. Applied Optics, 58(27): 7538-7551 [DOI: 10.1364/AO.58.007538http://dx.doi.org/10.1364/AO.58.007538]
Lu M, Liao X H, Yue H Y, Huang S F, Xu C C, Lu H Y and Bai Y Q. 2019. Determining the distribution of unmanned aerial vehicles airports for the emergency monitoring of floods in China. Journal of Geo-Information Science, 21(6): 854-864
鹿明, 廖小罕, 岳焕印, 黄诗峰, 徐晨晨, 卢海英, 柏艺琴. 2019. 面向中国洪涝灾害应急监测的无人机空港布局. 地球信息科学学报, 21(6): 854-864
Nex F, Armenakis C, Cramer M, Cucci D A, Gerke M, Honkavaara E, Kukko A, Persello C and Skaloud J. 2022. UAV in the advent of the twenties: where we stand and what is next. ISPRS Journal of Photogrammetry and Remote Sensing, 184: 215-242
Parmar H and Thornburgh M. 2012. Real-time messaging protocol (rtmp) specification. Adobe Specifications, December
Peng B F, Chen Z F, Li J H, Luo W J, Gan J and Zeng R L. 2018. Monitoring water quality of Dongting Lake region based on GF-1 image. Geographical Research, 37(9): 1683-1691
彭保发, 陈哲夫, 李建辉, 罗望军, 甘洁, 曾荣亮. 2018. 基于GF-1影像的洞庭湖区水体水质遥感监测. 地理研究, 37(9): 1683-1691 [DOI: 10.11821/dlyj201809002http://dx.doi.org/10.11821/dlyj201809002]
Redmon J, Divvala S, Girshick R and Farhadi A. 2016. You only look once: unified, real-time object detection//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE [DOI: 10.1109/CVPR.2016.91http://dx.doi.org/10.1109/CVPR.2016.91]
Shan J L, Li X N, Zhang J, Li Q, Tan L T, Ding C Z and Liang P X. 2019. Ources and prevention and control measures of agricultural non-point source pollution in Foshan City, Guangdong Province. Agricultural Engineering Technology, 39(17): 43-44
单既亮, 李湘妮, 张晶, 李强, 谭丽婷, 丁成章, 梁普兴. 2019. 广东佛山市农业面源污染来源与防控措施. 农业工程技术, 39(17): 43-44 [DOI: 10.16815/j.cnki.11-5436/s.2019.17.031http://dx.doi.org/10.16815/j.cnki.11-5436/s.2019.17.031]
Shi W S, Cao J, Zhang Q, Li Y H Z and Xu L Y. 2016. Edge computing: vision and challenges. IEEE Internet of Things Journal, 3(5): 637-646 [DOI: 10.1109/JIOT.2016.2579198http://dx.doi.org/10.1109/JIOT.2016.2579198]
Standard O. 2019. MQTT Version 5.0. Retrieved June, 22: 2020
U.S. Army 2010. Unmanned Aircraft Systems Roadmap, 2010-2035. 609874047. U.S. Army UAS Center of Excellence
Wang D, Yang C, Zheng Y H, Xiao X Y, Zhao L and Chen Z H. 2021. Estimation of mitigation effect of sponge city reconstruction on heat island effect. Resources and Environment in the Yangtze Basin, 30(4): 968-975
王丹, 杨超, 郑永宏, 肖雪莹, 赵林, 陈正洪. 2021. 海绵城市改造对热岛效应减缓效果的估算. 长江流域资源与环境, 30(4): 968-975 [DOI: 10.11870/cjlyzyyhj202104019http://dx.doi.org/10.11870/cjlyzyyhj202104019]
Wang K, Fu Y R, Peng X Y, Zuo Z Q, Yi L and Huang S B. 2017. Overview of UAV low altitude remote sensing technology and application in typical industries. Bulletin of Surveying and Mapping, (S1): 79-83
王柯, 付怡然, 彭向阳, 左志权, 易琳, 黄松波. 2017. 无人机低空遥感技术进展及典型行业应用综述. 测绘通报, (S1): 79-83 [DOI: 10.13474/j.cnki.11-2246.2017.0621http://dx.doi.org/10.13474/j.cnki.11-2246.2017.0621]
Wen J G, Xiao Q, Liu Q H and Zhou Y. 2007. Extraction of chlorophyll-a concentration based on spectral unmixing model in taihu lake water. Scientia Geographica Sinica, 27(1): 92-97
闻建光, 肖青, 柳钦火, 周艺. 2007. 基于混合光谱理论的太湖水体叶绿素a浓度提取. 地理科学, 27(1): 92-97 [DOI: 10.3969/j.issn.1000-0690.2007.01.015http://dx.doi.org/10.3969/j.issn.1000-0690.2007.01.015]
Xu C C, Ye H P, Yue H Y, Tan X and Liao X H. 2020. Iterative construction of UAV low-altitude air route network in an urbanized region: theoretical system and technical roadmap. Acta Geographica Sinica, 75(5): 917-930
徐晨晨, 叶虎平, 岳焕印, 谭翔, 廖小罕. 2020. 城镇化区域无人机低空航路网迭代构建的理论体系与技术路径. 地理学报, 75(5): 917-930 [DOI: 10.11821/dlxb202005003http://dx.doi.org/10.11821/dlxb202005003]
Xu R S, Kong G T and LI G H. 2007. Current situation and prevention countermeasures of agricultural non-point source pollution in Nanhai District, Foshan City. Guangdong Agricultural Sciences, (1): 72-73.
徐润生, 孔国添, 李广豪. 2007. 佛山市南海区农业面源污染现状及防治对策. 广东农业科学, (1): 72-73 [DOI: 10.3969/j.issn.1004-874X.2007.01.030http://dx.doi.org/10.3969/j.issn.1004-874X.2007.01.030]
Yang G J, Liu J G, Zhao C J, Li Z H, Huang Y B, Yu H Y, Xu B, Zhu D M, Zhang X Y, Zhang R Y, Feng H K, Zhao X Q, Li Z H, Li H L and Yang H. 2017. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives. Frontiers in Plant Science, 8: 1111 [DOI: 10.3389/fpls.2017.01111http://dx.doi.org/10.3389/fpls.2017.01111]
Zeng Y, Lyu J B and Zhang R. 2019. Cellular-connected UAV: potential, challenges, and promising technologies. IEEE Wireless Communications, 26(1): 120-127 [DOI: 10.1109/MWC.2018.1800023http://dx.doi.org/10.1109/MWC.2018.1800023]
Zhang C S, Liu Z J, Yang S W and Zuo Z Q. 2017. Data acquisition and processing for large UAV in inspecting transmission lines and its key technologies. Bulletin of Surveying and Mapping, S1: 136-139, 163
张昌赛, 刘正军, 杨树文, 左志权. 2017. 大型无人机输电线路巡检数据采集与处理关键技术. 测绘通报, (S1): 136-139, 163 [DOI: 10.13474/j.cnki.11-2246.2017.0636http://dx.doi.org/10.13474/j.cnki.11-2246.2017.0636]
Zhang H D, Wang L Q, Tian T and Yin J H. 2021. A Review of unmanned aerial vehicle low-altitude remote sensing (UAV-LARS) use in agricultural monitoring in China. Remote Sensing, 13(6): 1221 [DOI: 10.3390/rs13061221http://dx.doi.org/10.3390/rs13061221]
Zhang J X, Liu F and Wang J. 2021. Review of the light-weighted and small UAV system for aerial photography and remote sensing. National Remote Sensing Bulletin, 25(3): 708-724
张继贤, 刘飞, 王坚. 2021. 轻小型无人机测绘遥感系统研究进展. 遥感学报, 25(3): 708-724 [DOI: 10.11834/jrs.20210052http://dx.doi.org/10.11834/jrs.20210052]
相关作者
相关机构