甲烷柱浓度红外高光谱遥感反演与验证
CH4 column retrievals from ground-and space-based infrared spectra and satellite validation
- 2024年28卷第8期 页码:1968-1985
纸质出版日期: 2024-08-07
DOI: 10.11834/jrs.20242530
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2024-08-07 ,
移动端阅览
周敏强,倪启晨,王佳欣,蔡兆男,南卫东,王普才.2024.甲烷柱浓度红外高光谱遥感反演与验证.遥感学报,28(8): 1968-1985
Zhou M Q, Ni Q C, Wang J X, Cai Z N, Nan W D and Wang P C. 2024. CH4 column retrievals from ground-and space-based infrared spectra and satellite validation. National Remote Sensing Bulletin, 28(8):1968-1985
甲烷(CH
4
)浓度变化是当前气候变化研究中的一个焦点问题。红外高光谱遥感技术已经成为探测大气CH
4
浓度变化的重要技术手段。本文针对红外高光谱CH
4
地基遥感反演技术,介绍了国际上重要的观测网络,包括TCCON(Total Carbon Column Observing Network),NDACC-IRWG(Network for the Detection of Atmospheric Composition Change-the Infrared Working Group)和COCCON(COllaborative Carbon Column Observing Network),讨论了这些观测网络的主要特点,包括观测仪器、波段设置、反演算法、产品特性等。针对红外高光谱CH
4
浓度卫星遥感反演,概述了国际上的CH
4
卫星遥感发展现状。同时,以日本GOSAT(Greenhouse gases Observing SATellite)卫星为例,探讨了卫星CH
4
遥感地基验证工作中的关键技术,阐明了地基遥感对于卫星CH
4
遥感产品改进的重要性。最后,利用TCCON香河站的观测资料,对最新版的TROPOMI(TROPOspheric Monitoring Instrument)卫星CH
4
观测反演数据产品进行了地基验证,表明在华北地区TROPOMI CH
4
柱浓度产品达到了其观测精度目标设定要求;TROPOMI观测得到的CH
4
柱浓度年增长率要略高于TCCON的观测结果,两者相差0.263±0.172%/a;地基与卫星的差值具有季节变化特征,春季卫星的观测值大于TCCON观测值约0.3%,秋季卫星的观测值小于TCCON观测值约0.2%。
Methane (CH
4
) is the second most important greenhouse gas in the Earth’s atmosphere
after carbon dioxide (CO
2
). Understanding the change in CH
4
concentration is a challenging task in atmospheric research given that it has various sources. Remote sensing has now become an effective technique to monitor CH
4
concentrations globally. In this study
we presented an overview of CH
4
column retrievals based on ground-based Fourier Transform Infrared spectrometer (FTIR) and space-based infrared measurements. Satellite validations were also discussed.
Currently
three ground-based remote sensing international observation networks provide CH
4
columns: the Total Carbon Column Observing Network (TCCON)
the NDACC-IRWG (Network for the Detection of Atmospheric Composition Change - the Infrared Working Group)
and the COCCON (COllaborative Carbon Column Observing Network). The main characteristics of the three networks were presented and discussed in our study
such as the measuremen
t instrument
the observed spectra
the retrieval algorithm
and the post-correction. TCCON and COCCON provide dry-air column-averaged mole fraction of CH
4
(XCH
4
) measurements
with a systematic/random uncertainty of 0.1/0.5%. NDACC provides a total column of CH
4
with a slightly large systematic/random uncertainty of 0.2/1.0%. However
it also provides a vertical profile of CH
4
which allows us to observe the CH
4
variations in the troposphere and stratosphere separately.
Regarding the satellite CH
4
retrievals
we compared several popular sensors with a nadir-view geometry and their retrieval algorithms
such as the TANSO-FTS/GOSAT
TROPOMI/S5P
IASI/MetOp
and AIRS/Aqua. Basically
the short-wave infrared measurements (GOSAT and TROPOMI) have more sensitivity to the low troposphere
while the thermal infrared measurements (IASI and AIRS) are mainly sensitive to the mid- and upper troposphere. The difference in their vertical sensitivity comes from the CH
4
-specific absorption lines in the infrared region. All satellite retrievals are affected by the cloud
aerosol
and surface parameters. They also need to be validated and calibrated against ground-based measurements. Here
key steps during the satellite CH
4
validation were discussed
including the statistical parameters
the a priori substitution
the smoothing correction
and the surface altitude correction.
Finally
we showed the CH
4
retrievals observed by the ground-based FTIR system at Xianghe
North China. We operated TCCON-type and NDACC-type measurements for the Bruker 125HR instrument and COCCON-type measurements for the Bruker EM27/SUN instrument. The entire FTIR measurement system at Xianghe was well described. Then
we used the TCCON
<math id="M1"><msub><mrow><mi>X</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">H</mi></mrow><mrow><mn mathvariant="normal">4</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=64583664&type=
2.87866688
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=64583667&type=
5.41866684
measurements to validate the co-located TROPOMI satellite observations within 50 km at Xianghe. The mean difference between TCCON and TROPOMI
<math id="M2"><msub><mrow><mi>X</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">H</mi></mrow><mrow><mn mathvariant="normal">4</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=64583702&type=
2.87866688
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=64583690&type=
5.41866684
measurements from June 2018 to May 2021 is 0.109% (nearly 2 ppb)
which is within the retrieval uncertainty of the TROPOMI measurement. Moreover
a high correlation (
R
= 0.92) is found between TCCON and TROPOMI
<math id="M3"><msub><mrow><mi>X</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">H</mi></mrow><mrow><mn mathvariant="normal">4</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=64583715&type=
2.87866688
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=64583719&type=
5.41866684
measurements at Xianghe. However
the annual growth of
<math id="M4"><msub><mrow><mi>X</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">H</mi></mrow><mrow><mn mathvariant="normal">4</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=64583715&type=
2.87866688
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=64583719&type=
5.41866684
derived from the TROPOMI satellite measurements is 0.263% ± 0.172%/year larger than that derived from the TCCON measurements. Besides
seasonal variation is observed in the differences between TCCON and TROPOMI
<math id="M5"><msub><mrow><mi>X</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">H</mi></mrow><mrow><mn mathvariant="normal">4</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=64583715&type=
2.87866688
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=64583719&type=
5.41866684
measurements
and the differences are obvious when the surface albedo is less than 0.1. Therefore
further investigations are needed to improve the TROPOMI CH
4
retrievals in North China.
遥感甲烷柱浓度地基傅里叶光谱卫星验证TROPOMI
remote sensingCH4total columnground-based Fourier-transform infrared (FTIR) spectrometersatellite validationTROPOMI
Abernethy S, O’Connor F M, Jones C D and Jackson R B. 2021. Methane removal and the proportional reductions in surface temperature and ozone. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2210): 20210104 [DOI: 10.1098/rsta.2021.0104http://dx.doi.org/10.1098/rsta.2021.0104]
Alexe M, Bergamaschi P, Segers A, Detmers R, Butz A, Hasekamp O, Guerlet S, Parker R, Boesch H, Frankenberg C, Scheepmaker R A, Dlugokencky E, Sweeney C, Wofsy S C and Kort E A. 2015. Inverse modelling of CH4 emissions for 2010-2011 using different satellite retrieval products from GOSAT and SCIAMACHY. Atmospheric Chemistry and Physics, 15(1): 113-133 [DOI: 10.5194/acp-15-113-2015http://dx.doi.org/10.5194/acp-15-113-2015]
Bergamaschi P, Houweling S, Segers A, Krol M, Frankenberg C, Scheepmaker R A, Dlugokencky E, Wofsy S C, Kort E A, Sweeney C, Schuck T, Brenninkmeijer C, Chen H, Beck V and Gerbig C. 2013. Atmospheric CH4 in the first decade of the 21st century: inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements. Journal of Geophysical Research: Atmospheres, 118(13): 7350-7369 [DOI: 10.1002/jgrd.50480http://dx.doi.org/10.1002/jgrd.50480]
Buchwitz M, Reuter M, Schneising O, Boesch H, Guerlet S, Dils B, Aben I, Armante R, Bergamaschi P, Blumenstock T, Bovensmann H, Brunner D, Buchmann B, Burrows J P, Butz A, Chédin A, Chevallier F, Crevoisier C D, Deutscher N M, Frankenberg C, Hase F, Hasekamp O P, Heymann J, Kaminski T, Laeng A, Lichtenberg G, De Mazière M, Noël S, Notholt J, Orphal J, Popp C, Parker R, Scholze M, Sussmann R, Stiller G P, Warneke T, Zehner C, Bril A, Crisp D, Griffith D W T, Kuze A, O’Dell C, Oshchepkov S, Sherlock V, Suto H, Wennberg P, Wunch D, Yokota T and Yoshida Y. 2015. The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets. Remote Sensing of Environment, 162: 344-362 [DOI: 10.1016/j.rse.2013.04.024http://dx.doi.org/10.1016/j.rse.2013.04.024]
Buchwitz M, Reuter M, Schneising O, Hewson W, Detmers R G, Boesch H, Hasekamp O P, Aben I, Bovensmann H, Burrows J P, Butz A, Chevallier F, Dils B, Frankenberg C, Heymann J, Lichtenberg G, De Mazière M, Notholt J, Parker R, Warneke T, Zehner C, Griffith D W T, Deutscher N M, Kuze A, Suto H and Wunch D. 2017. Global satellite observations of column-averaged carbon dioxide and methane: the GHG-CCI XCO2 and XCH4 CRDP3 data set. Remote Sensing of Environment, 203: 276-295 [DOI: 10.1016/j.rse.2016.12.027http://dx.doi.org/10.1016/j.rse.2016.12.027]
Butz A, Guerlet S, Hasekamp O, Schepers D, Galli A, Aben I, Frankenberg C, Hartmann J M, Tran H, Kuze A, Keppel-Aleks G, Toon G, Wunch D, Wennberg P, Deutscher N, Griffith D, Macatangay R, Messerschmidt J, Notholt J and Warneke T. 2011. Toward accurate CO2 and CH4 observations from GOSAT. Geophysical Research Letters, 38(14): L14812 [DOI: 10.1029/2011GL047888http://dx.doi.org/10.1029/2011GL047888]
Butz A, Hasekamp O P, Frankenberg C, Vidot J and Aben I. 2010. CH4 retrievals from space-based solar backscatter measurements: performance evaluation against simulated aerosol and cirrus loaded scenes. Journal of Geophysical Research: Atmospheres, 115(D24): D24302 [DOI: 10.1029/2010JD014514http://dx.doi.org/10.1029/2010JD014514]
De Wachter E, Kumps N, Vandaele A C, Langerock B and De Mazière M. 2017. Retrieval and validation of MetOp/IASI methane. Atmospheric Measurement Techniques, 10(12): 4623-4638 [DOI: 10.5194/amt-10-4623-2017http://dx.doi.org/10.5194/amt-10-4623-2017]
De Mazière M, Thompson A M, Kurylo M J, Wild J D, Bernhard G, Blumenstock T, Braathen G O, Hannigan J W, Lambert J C, Leblanc T, McGee T J, Nedoluha G, Petropavlovskikh I, Seckmeyer G, Simon P C, Steinbrecht W and Strahan S E. 2018. The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives. Atmospheric Chemistry and Physics, 18(7): 4935-4964 [DOI: 10.5194/acp-18-4935-2018http://dx.doi.org/10.5194/acp-18-4935-2018]
De Mazière M, Vigouroux C, Bernath P F, Baron P, Blumenstock T, Boone C, Brogniez C, Catoire V, Coffey M, Duchatelet P, Griffith D, Hannigan J, Kasai Y, Kramer I, Jones N, Mahieu E, Manney G L, Piccolo C, Randall C, Robert C, Senten C, Strong K, Taylor J, Tétard C, Walker K A and Wood S. 2008. Validation of ACE-FTS v2.2 methane profiles from the upper troposphere to the lower mesosphere. Atmospheric Chemistry and Physics, 8(9): 2421-2435 [DOI: 10.5194/acp-8-2421-2008http://dx.doi.org/10.5194/acp-8-2421-2008]
Dietrich F, Chen J, Voggenreiter B, Aigner P, Nachtigall N and Reger B. 2021. MUCCnet: munich urban carbon column network. Atmospheric Measurement Techniques, 14(2): 1111-1126 [DOI: 10.5194/amt-14-1111-2021http://dx.doi.org/10.5194/amt-14-1111-2021]
Dils B, Buchwitz M, Reuter M, Schneising O, Boesch H, Parker R, Guerlet S, Aben I, Blumenstock T, Burrows J P, Butz A, Deutscher N M, Frankenberg C, Hase F, Hasekamp O P, Heymann J, De Mazière M, Notholt J, Sussmann R, Warneke T, Griffith D, Sherlock V and Wunch D. 2014. The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO2 and CH4 retrieval algorithm products with measurements from the TCCON. Atmospheric Measurement Techniques, 7(6): 1723-1744 [DOI: 10.5194/amt-7-1723-2014http://dx.doi.org/10.5194/amt-7-1723-2014]
Frey M, Hase F, Blumenstock T, Groß J, Kiel M, Mengistu Tsidu G, Schäfer K, Sha M K and Orphal J. 2015. Calibration and instrumental line shape characterization of a set of portable FTIR spectrometers for detecting greenhouse gas emissions. Atmospheric Measurement Techniques, 8(7): 3047-3057 [DOI: 10.5194/amt-8-3047-2015http://dx.doi.org/10.5194/amt-8-3047-2015]
Frey M, Sha M K, Hase F, Kiel M, Blumenstock T, Harig R, Surawicz G, Deutscher N M, Shiomi K, Franklin J E, Bösch H, Chen J, Grutter M, Ohyama H, Sun Y W, Butz A, Mengistu Tsidu G, Ene D, Wunch D, Cao Z S, Garcia O, Ramonet M, Vogel F and Orphal J. 2019. Building the COllaborative Carbon Column Observing Network (COCCON): long-term stability and ensemble performance of the EM27/SUN Fourier transform spectrometer. Atmospheric Measurement Techniques, 12(3): 1513-1530 [DOI: 10.5194/amt-12-1513-2019http://dx.doi.org/10.5194/amt-12-1513-2019]
García O E, Schneider M, Ertl B, Sepúlveda E, Borger C, Diekmann C, Wiegele A, Hase F, Barthlott S, Blumenstock T, Raffalski U, Gómez-Peláez A, Steinbacher M, Ries L and de Frutos A M. 2018. The MUSICA IASI CH4 and N2O products and their comparison to HIPPO, GAW and NDACC FTIR references. Atmospheric Measurement Techniques, 11(7): 4171-4215 [DOI: 10.5194/amt-11-4171-2018http://dx.doi.org/10.5194/amt-11-4171-2018]
Gisi M, Hase F, Dohe S and Blumenstock T. 2011. Camtracker: a new camera controlled high precision solar tracker system for FTIR-spectrometers. Atmospheric Measurement Techniques, 4(1): 47-54 [DOI: 10.5194/amt-4-47-2011http://dx.doi.org/10.5194/amt-4-47-2011]
Gordon I E, Rothman L S, Hargreaves R J, Hashemi R, Karlovets E V, Skinner F M, Conway E K, Hill C, Kochanov R V, Tan Y, Wcisło P, Finenko A A, Nelson K, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Coustenis A, Drouin B J, Flaud J M, Gamache R R, Hodges J T, Jacquemart D, Mlawer E J, Nikitin A V, Perevalov V I, Rotger M, Tennyson J, Toon G C, Tran H, Tyuterev V G, Adkins E M, Baker A, Barbe A, Canè E, Császár A G, Dudaryonok A, Egorov O, Fleisher A J, Fleurbaey H, Foltynowicz A, Furtenbacher T, Harrison J J, Hartmann J M, Horneman V M, Huang X, Karman T, Karns J, Kassi S, Kleiner I, Kofman V, Kwabia–Tchana F, Lavrentieva N N, Lee T J, Long D A, Lukashevskaya A A, Lyulin O M, Makhnev V Y, Matt W, Massie S T, Melosso M, Mikhailenko S N, Mondelain D, Müller H S P, Naumenko O V, Perrin A, Polyansky O L, Raddaoui E, Raston P L, Reed Z D, Rey M, Richard C, Tóbiás R, Sadiek I, Schwenke D W, Starikova E, Sung K, Tamassia F, Tashkun S A, Vander Auwera J, Vasilenko I A, Vigasin A A, Villanueva G L, Vispoel B, Wagner G, Yachmenev A and Yurchenko S N. 2022. The HITRAN2020 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 277: 107949 [DOI: 10.1016/j.jqsrt.2021.107949http://dx.doi.org/10.1016/j.jqsrt.2021.107949]
Guanter L, Irakulis-Loitxate I, Gorroño J, Sánchez-García E, Cusworth D H, Varon D J, Cogliati S and Colombo R. 2021. Mapping methane point emissions with the PRISMA spaceborne imaging spectrometer. Remote Sensing of Environment, 265: 112671 [DOI: 10.1016/j.rse.2021.112671http://dx.doi.org/10.1016/j.rse.2021.112671]
Hase F, Hannigan J W, Coffey M T, Goldman A, Höpfner M, Jones N B, Rinsland C P and Wood S W. 2004. Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 87(1): 25-52 [DOI: 10.1016/j.jqsrt.2003.12.008http://dx.doi.org/10.1016/j.jqsrt.2003.12.008]
Hopkins F M, Ehleringer J R, Bush S E, Duren R M, Miller C E, Lai C T, Hsu Y K, Carranza V and Randerson J T. 2016. Mitigation of methane emissions in cities: how new measurements and partnerships can contribute to emissions reduction strategies. Earth’s Future, 4(9): 408-425 [DOI: 10.1002/2016ef000381http://dx.doi.org/10.1002/2016ef000381]
IPCC. 2014. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press
Irakulis-Loitxate I, Guanter L, Liu Y N, Varon D J, Maasakkers J D, Zhang Y Z, Chulakadabba A, Wofsy S C, Thorpe A K, Duren R M, Frankenberg C, Lyon D R, Hmiel B, Cusworth D H, Zhang Y G, Segl K, Gorroño J, Sánchez-García E, Sulprizio M P, Cao K Q, Zhu H J, Liang J, Li X, Aben I and Jacob D J. 2021. Satellite-based survey of extreme methane emissions in the Permian basin. Science Advances, 7(27): eabf4507 [DOI: 10.1126/sciadv.abf4507http://dx.doi.org/10.1126/sciadv.abf4507]
Jacob D J, Varon D J, Cusworth D H, Dennison P E, Frankenberg C, Gautam R, Guanter L, Kelley J, McKeever J, Ott L E, Poulter B, Qu Z, Thorpe A K, Worden J R and Duren R M. 2022. Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane. Atmospheric Chemistry and Physics, 22(14): 9617-9646 [DOI: 10.5194/acp-22-9617-2022http://dx.doi.org/10.5194/acp-22-9617-2022]
Ji D H, Zhou M Q, Wang P C, Yang Y, Wang T, Sun X Y, Hermans C, Yao B and Wang G C. 2020. Deriving temporal and vertical distributions of methane in Xianghe using ground-based Fourier transform infrared and gas-analyzer measurements. Advances in Atmospheric Sciences, 37(6): 597-607 [DOI: 10.1007/s00376-020-9233-4http://dx.doi.org/10.1007/s00376-020-9233-4]
Keppel-Aleks G, Toon G C, Wennberg P O and Deutscher N M. 2007. Reducing the impact of source brightness fluctuations on spectra obtained by Fourier-transform spectrometry. Applied Optics, 46(21): 4774 [DOI: 10.1364/AO.46.004774http://dx.doi.org/10.1364/AO.46.004774]
Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell J G, Dlugokencky E J, Bergamaschi P, Bergmann D, Blake D R, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson E L, Houweling S, Josse B, Fraser P J, Krummel P B, Lamarque J F, Langenfelds R L, Le Quéré C, Naik V, O’Doherty S, Palmer P I, Pison I, Plummer D, Poulter B, Prinn R G, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell D T, Simpson I J, Spahni R, Steele L P, Strode S A, Sudo K, Szopa S, Van Der Werf G R, Voulgarakis A, Van Weele M, Weiss R F, Williams J E and Zeng G. 2013. Three decades of global methane sources and sinks. Nature Geoscience, 6(10): 813-823 [DOI: 10.1038/ngeo1955http://dx.doi.org/10.1038/ngeo1955]
Lauvaux T, Giron C, Mazzolini M, d’Aspremont A, Duren R, Cusworth D, Shindell D and Ciais P. 2022. Global assessment of oil and gas methane ultra-emitters. Science, 375(6580): 557-561 [DOI: 10.1126/science.abj4351http://dx.doi.org/10.1126/science.abj4351]
Liu W Q. 2022. Opportunities and challenges for development of atmospheric environmental optics monitoring technique under “Double Carbon” goal. Acta Optica Sinica, 42(6): 0600001
刘文清. 2022. “双碳”目标下大气环境光学监测技术发展机遇. 光学学报, 42(6): 0600001 [DOI: 10.3788/aos202242.0600001http://dx.doi.org/10.3788/aos202242.0600001]
Liu W Q, Chen Z Y, Liu J G, Xie P H, Liu C and Zhao N J. 2016. Research progress on optical observations for atmospheric environment in China. Journal of Remote Sensing (in Chinese), 20(5): 724-732
刘文清, 陈臻懿, 刘建国, 谢品华, 刘诚, 赵南京. 2016. 中国大气环境光学探测研究. 遥感学报, 20(5): 724-732 [DOI: 10.11834/jrs.20166229http://dx.doi.org/10.11834/jrs.20166229]
Lorente A, Borsdorff T, Butz A, Hasekamp O, aan de Brugh J, Schneider A, Wu L H, Hase F, Kivi R, Wunch D, Pollard D F, Shiomi K, Deutscher N M, Velazco V A, Roehl C M, Wennberg P O, Warneke T and Landgraf J. 2021. Methane retrieved from TROPOMI: improvement of the data product and validation of the first 2 years of measurements. Atmospheric Measurement Techniques, 14(1): 665-684 [DOI: 10.5194/amt-14-665-2021http://dx.doi.org/10.5194/amt-14-665-2021]
Maasakkers J D, Varon D J, Elfarsdóttir A, McKeever J, Jervis D, Mahapatra G, Pandey S, Lorente A, Borsdorff T, Foorthuis L R, Schuit B J, Tol P, van Kempen T A, van Hees R and Aben I. 2022. Using satellites to uncover large methane emissions from landfills. Science Advances, 8(32): eabn9683 [DOI: 10.1126/sciadv.abn9683http://dx.doi.org/10.1126/sciadv.abn9683]
Mendonca J, Strong K, Sung K, Devi V M, Toon G C, Wunch D and Franklin J E. 2017. Using high-resolution laboratory and ground-based solar spectra to assess CH4 absorption coefficient calculations. Journal of Quantitative Spectroscopy and Radiative Transfer, 190: 48-59 [DOI: 10.1016/j.jqsrt.2016.12.013http://dx.doi.org/10.1016/j.jqsrt.2016.12.013]
Morino I, Uchino O, Inoue M, Yoshida Y, Yokota T, Wennberg P O, Toon G C, Wunch D, Roehl C M, Notholt J, Warneke T, Messerschmidt J, Griffith D W T, Deutscher N M, Sherlock V, Connor B, Robinson J, Sussmann R and Rettinger M. 2011. Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra. Atmospheric Measurement Techniques, 4(6): 1061-1076 [DOI: 10.5194/amt-4-1061-2011http://dx.doi.org/10.5194/amt-4-1061-2011]
Ostler A, Sussmann R, Rettinger M, Deutscher N M, Dohe S, Hase F, Jones N, Palm M and Sinnhuber B M. 2014. Multistation intercomparison of column-averaged methane from NDACC and TCCON: impact of dynamical variability. Atmospheric Measurement Techniques, 7(12): 4081-4101 [DOI: 10.5194/amt-7-4081-2014http://dx.doi.org/10.5194/amt-7-4081-2014]
Pandey S, Gautam R, Houweling S, van der Gon H D, Sadavarte P, Borsdorff T, Hasekamp O, Landgraf J, Tol P, van Kempen T, Hoogeveen R, van Hees R, Hamburg S P, Maasakkers J D and Aben I. 2019. Satellite observations reveal extreme methane leakage from a natural gas well blowout. Proceedings of the National Academy of Sciences of the United States of America, 116(52): 26376-26381 [DOI: 10.1073/pnas.1908712116http://dx.doi.org/10.1073/pnas.1908712116]
Parker R, Boesch H, Cogan A, Fraser A, Feng L, Palmer P I, Messerschmidt J, Deutscher N, Griffith D W T, Notholt J, Wennberg P O and Wunch D. 2011. Methane observations from the Greenhouse Gases Observing SATellite: comparison to ground-based TCCON data and model calculations. Geophysical Research Letters, 38(15): L15807 [DOI: 10.1029/2011GL047871http://dx.doi.org/10.1029/2011GL047871]
Parker R J, Webb A, Boesch H, Somkuti P, Barrio Guillo R, Di Noia A, Kalaitzi N, Anand J S, Bergamaschi P, Chevallier F, Palmer P I, Feng L, Deutscher N M, Feist D G, Griffith D W T, Hase F, Kivi R, Morino I, Notholt J, Oh Y S, Ohyama H, Petri C, Pollard D F, Roehl C, Sha M K, Shiomi K, Strong K, Sussmann R, Té Y, Velazco V A, Warneke T, Wennberg P O and Wunch D. 2020. A decade of GOSAT Proxy satellite CH4 observations. Earth System Sciemce Data, 12(4): 3383-3412 [DOI: 10.5194/essd-12-3383-2020http://dx.doi.org/10.5194/essd-12-3383-2020]
Pierangelo C, Millet B, Esteve F, Alpers M, Ehret G, Flamant P, Berthier S, Gibert F, Chomette O, Edouart D, Deniel C, Bousquet P and Chevallier F. 2016. MERLIN (Methane Remote Sensing Lidar Mission): an overview. EPJ Web of Conferences, 119: 26001 [DOI: 10.1051/epjconf/201611926001http://dx.doi.org/10.1051/epjconf/201611926001]
Plant G, Kort E A, Murray L T, Maasakkers J D and Aben I. 2022. Evaluating urban methane emissions from space using TROPOMI methane and carbon monoxide observations. Remote Sensing of Environment, 268: 112756 [DOI: 10.1016/j.rse.2021.112756http://dx.doi.org/10.1016/j.rse.2021.112756]
Qu Z, Jacob D J, Shen L, Lu X, Zhang Y Z, Scarpelli T R, Nesser H, Sulprizio M P, Maasakkers J D, Bloom A A, Worden J R, Parker R J and Delgado A L. 2021. Global distribution of methane emissions: a comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments. Atmospheric Chemistry and Physics, 21(18): 14159-14175 [DOI: 10.5194/acp-21-14159-2021http://dx.doi.org/10.5194/acp-21-14159-2021]
Rodgers C D. 2000. Inverse Methods for Atmospheric Sounding: Theory and Practice. Vol. 2: World Scientific. Singapore: World Scientific
Rodgers C D and Connor B J. 2003. Intercomparison of remote sounding instruments. Journal of Geophysical Research: Atmospheres, 108(D3): 4116 [DOI: 10.1029/2002JD002299http://dx.doi.org/10.1029/2002JD002299]
Schepers D, Guerlet S, Butz A, Landgraf J, Frankenberg C, Hasekamp O, Blavier J F, Deutscher N M, Griffith D W T, Hase F, Kyro E, Morino I, Sherlock V, Sussmann R and Aben I. 2012. Methane retrievals from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared measurements: performance comparison of proxy and physics retrieval algorithms. Journal of Geophysical Research: Atmospheres, 117(D10): D10307 [DOI: 10.1029/2012JD017549http://dx.doi.org/10.1029/2012JD017549]
Sha M K, De Mazière M, Notholt J, Blumenstock T, Chen H L, Dehn A, Griffith D W T, Hase F, Heikkinen P, Hermans C, Hoffmann A, Huebner M, Jones N, Kivi R, Langerock B, Petri C, Scolas F, Tu Q S and Weidmann D. 2020. Intercomparison of low- and high-resolution infrared spectrometers for ground-based solar remote sensing measurements of total column concentrations of CO2, CH4, and CO. Atmospheric Measurement Techniques, 13(9): 4791-4839 [DOI: 10.5194/amt-13-4791-2020http://dx.doi.org/10.5194/amt-13-4791-2020]
Sha M K, Langerock B, Blavier J F L, Blumenstock T, Borsdorff T, Buschmann M, Dehn A, De Mazière M, Deutscher N M, Feist D G, García O E, Griffith D W T, Grutter M, Hannigan J W, Hase F, Heikkinen P, Hermans C, Iraci L T, Jeseck P, Jones N, Kivi R, Kumps N, Landgraf J, Lorente A, Mahieu E, Makarova M V, Mellqvist J, Metzger J M, Morino I, Nagahama T, Notholt J, Ohyama H, Ortega I, Palm M, Petri C, Pollard D F, Rettinger M, Robinson J, Roche S, Roehl C M, Röhling A N, Rousogenous C, Schneider M, Shiomi K, Smale D, Stremme W, Strong K, Sussmann R, Té Y, Uchino O, Velazco V A, Vigouroux C, Vrekoussis M, Wang P C, Warneke T, Wizenberg T, Wunch D, Yamanouchi S, Yang Y and Zhou M Q. 2021. Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations. Atmospheric Measurement Techniques, 14(9): 6249-6304 [DOI: 10.5194/amt-14-6249-2021http://dx.doi.org/10.5194/amt-14-6249-2021]
Sherwin E D, Rutherford J S, Chen Y L, Aminfard S, Kort E A, Jackson R B and Brandt A R. 2023. Single-blind validation of space-based point-source detection and quantification of onshore methane emissions. Scientific Reports, 13: 3836 [https://doi.org/10.1038/s41598-023-30761-2https://doi.org/10.1038/s41598-023-30761-2]
Toon G C. 2022. Solar Line List for the TCCON 2020 Data Release. CaltechDATA [DOI: 10.14291/TCCON.GGG2020.SOLAR.R0http://dx.doi.org/10.14291/TCCON.GGG2020.SOLAR.R0]
Tu Q S, Hase F, Schneider M, García O, Blumenstock T, Borsdorff T, Frey M, Khosrawi F, Lorente A, Alberti C, Bustos J J, Butz A, Carreño V, Cuevas E, Curcoll R, Diekmann C J, Dubravica D, Ertl B, Estruch C, León-Luis S F, Marrero C, Morgui J A, Ramos R, Scharun C, Schneider C, Sepúlveda E, Toledano C and Torres C. 2022. Quantification of CH4 emissions from waste disposal sites near the city of Madrid using ground- and space-based observations of COCCON, TROPOMI and IASI. Atmospheric Chemistry and Physics, 22(1): 295-317 [DOI: 10.5194/acp-22-295-2022http://dx.doi.org/10.5194/acp-22-295-2022]
Varon D J, Jervis D, McKeever J, Spence I, Gains D and Jacob D J. 2021. High-frequency monitoring of anomalous methane point sources with multispectral Sentinel-2 satellite observations. Atmospheric Measurement Techniques, 14(4): 2771-2785 [DOI: 10.5194/amt-14-2771-2021http://dx.doi.org/10.5194/amt-14-2771-2021]
Vogel F R, Frey M, Staufer J, Hase F, Broquet G, Xueref-Remy I, Chevallier F, Ciais P, Sha M K, Chelin P, Jeseck P, Janssen C, Té Y, Groß J, Blumenstock T, Tu Q S and Orphal J. 2019. XCO2 in an emission hot-spot region: the COCCON Paris campaign 2015. Atmospheric Chemistry and Physics, 19(5): 3271-3285 [DOI: 10.5194/acp-19-3271-2019http://dx.doi.org/10.5194/acp-19-3271-2019]
von Clarmann T, Höpfner M, Kellmann S, Linden A, Chauhan S, Funke B, Grabowski U, Glatthor N, Kiefer M, Schieferdecker T, Stiller G P and Versick S. 2009. Retrieval of temperature, H2O, O3, HNO3, CH4, N2O, ClONO2 and ClO from MIPAS reduced resolution nominal mode limb emission measurements. Atmospheric Measurement Techniques, 2(1): 159-175 [DOI: 10.5194/amt-2-159-2009http://dx.doi.org/10.5194/amt-2-159-2009]
Wang F J, Maksyutov S, Tsuruta A, Janardanan R, Ito A, Sasakawa M, Machida T, Morino I, Yoshida Y, Kaiser J W, Janssens-Maenhout G, Dlugokencky E J, Mammarella I, Lavric J V and Matsunaga T. 2019. Methane emission estimates by the global high-resolution inverse model using national inventories. Remote Sensing, 11(21): 2489 [DOI: 10.3390/rs11212489http://dx.doi.org/10.3390/rs11212489]
Wang M X. 1991. Atmospheric Chemistry. Beijing: Meteorological Press
王明星. 1991. 大气化学. 北京: 气象出版社
Wunch D, Toon G C, Blavier J F L, Washenfelder R A, Notholt J, Connor B J, Griffith D W T, Sherlock V and Wennberg P O. 2011. The total carbon column observing network. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1943): 2087-2112 [DOI: 10.1098/rsta.2010.0240http://dx.doi.org/10.1098/rsta.2010.0240]
Yang Y, Zhou M Q, Langerock B, Sha M K, Hermans C, Wang T, Ji D H, Vigouroux C, Kumps N, Wang G C, De Mazière M and Wang P C. 2020. New ground-based Fourier-transform near-infrared solar absorption measurements of XCO2, XCH4 and XCO at Xianghe, China. Earth System Science Data, 12(3): 1679-1696 [DOI: 10.5194/essd-12-1679-2020http://dx.doi.org/10.5194/essd-12-1679-2020]
Yoshida Y, Kikuchi N, Morino I, Uchino O, Oshchepkov S, Bril A, Saeki T, Schutgens N, Toon G C, Wunch D, Roehl C M, Wennberg P O, Griffith D W T, Deutscher N M, Warneke T, Notholt J, Robinson J, Sherlock V, Connor B, Rettinger M, Sussmann R, Ahonen P, Heikkinen P, Kyrö E, Mendonca J, Strong K, Hase F, Dohe S and Yokota T. 2013. Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data. Atmospheric Measurement Techniques, 6(6): 1533-1547 [DOI: 10.5194/amt-6-1533-2013http://dx.doi.org/10.5194/amt-6-1533-2013]
Yoshida Y, Ota Y, Eguchi N, Kikuchi N, Nobuta K, Tran H, Morino I and Yokota T. 2011. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite. Atmospheric Measurement Techniques, 4(4): 717-734 [DOI: 10.5194/amt-4-717-2011http://dx.doi.org/10.5194/amt-4-717-2011]
Zhang D Y and Liao H. 2015. Advances in the research on sources and sinks of CH4 and observations and simulations of CH4 concentrations. Advances in Meteorological Science and Technology, 5(1): 40-47
张定媛, 廖宏. 2015. 大气甲烷的源和汇及其浓度的观测模拟研究进展. 气象科技进展, 5(1): 40-47 [DOI: 10.3969/j.issn.2095-1973.2015.01.005http://dx.doi.org/10.3969/j.issn.2095-1973.2015.01.005]
Zhou M Q, Dils B, Wang P C, Detmers R, Yoshida Y, O'Dell C W, Feist D G, Velazco V A, Schneider M and De Mazière M. 2016. Validation of TANSO-FTS/GOSAT XCO2 and XCH4 glint mode retrievals using TCCON data from near-ocean sites. Atmospheric Measurement Techniques, 9(3): 1415-1430 [DOI: 10.5194/amt-9-1415-2016http://dx.doi.org/10.5194/amt-9-1415-2016]
Zhou M Q, Langerock B, Vigouroux C, Sha M K, Ramonet M, Delmotte M, Mahieu E, Bader W, Hermans C, Kumps N, Metzger J M, Duflot V, Wang Z T, Palm M and De Mazière M. 2018. Atmospheric CO and CH4 time series and seasonal variations on Reunion Island from ground-based in situ and FTIR (NDACC and TCCON) measurements. Atmospheric Chemistry and Physics, 18(19): 13881-13901 [DOI: 10.5194/acp-18-13881-2018http://dx.doi.org/10.5194/acp-18-13881-2018]
Zhou M Q, Langerock B, Wells K C, Millet D B, Vigouroux C, Sha M K, Hermans C, Metzger J M, Kivi R, Heikkinen P, Smale D, Pollard D F, Jones N, Deutscher N M, Blumenstock T, Schneider M, Palm M, Notholt J, Hannigan J W and De Mazière M. 2019. An intercomparison of total column-averaged nitrous oxide between ground-based FTIR TCCON and NDACC measurements at seven sites and comparisons with the GEOS-Chem model. Atmospheric Measurement Techniques, 12(2): 1393-1408 [DOI: 10.5194/amt-12-1393-2019http://dx.doi.org/10.5194/amt-12-1393-2019]
相关作者
相关机构