基于深度学习的高光谱遥感图像混合像元分解研究综述
Development of deep learning-based hyperspectral remote sensing image unmixing
- 2024年28卷第1期 页码:1-19
纸质出版日期: 2024-01-07
DOI: 10.11834/jrs.20243165
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2024-01-07 ,
扫 描 看 全 文
苏远超,许若晴,高连如,韩竹,孙旭.2024.基于深度学习的高光谱遥感图像混合像元分解研究综述.遥感学报,28(1): 1-19
Su Y C,Xu R Q,Gao L R,Han Z and Sun X. 2024. Development of deep learning-based hyperspectral remote sensing image unmixing. National Remote Sensing Bulletin, 28(1):1-19
高光谱遥感是以成像光谱学为基础发展起来的一项综合性遥感技术,它能够同步记录成像区域内地物的空间信息和光谱信号,故而也称为“成像光谱遥感”。高光谱遥感所获取的数据称为“高光谱遥感图像”,相较于传统的遥感数据,高光谱遥感图像具有光谱分辨率高和“图谱合一”的特点,目前已成为遥感工程应用中的重要支撑数据之一。然而,受空间分辨率限制,混合像元(即某一像元内包含多种类型的地物)问题始终限制着高光谱遥感在精细化地物信息提取工作中的作用。混合像元分解(“解混”)是现阶段处理混合像元问题最有效的分析方法,旨在从亚像元角度出发,获取像元中纯净的光谱信号(“端元”),并分析出各类端元在像元内所占的比例(“丰度”)。在遥感领域,为实现地物信息精细化解译,目前已发展出不同类型的解混方法,在一定程度上解决了混合像元问题对遥感定量化分析的制约。如今,随着深度学习的发展,越来越多的先进理论和工具被用于处理混合像元问题,发展出了一类基于深度学习的新型解混方法。这些新方法以光谱混合模型为桥梁,用深度学习方式来解译光谱混合现象。相比于传统的解混方法,基于深度学习的解混方法在隐藏信息的挖掘和利用方面更具优势,对先验知识依赖程度相对较低,对复杂场景的适应性更强。近年来,基于深度学习的解混方法发展迅速,并且在植被分布调查、农业产量估算等经常涉及混合像元问题的工作中被逐渐普及,有很好的发展前景和应用价值。本文以光谱混合模型和训练方式为基础,对现阶段基于深度学习解混的研究成果进行归类,并从不同类别的特点出发,对现有基于深度学习的解混方法进行介绍。最后,对当前的技术状况、特点和发展前景进行总结与展望,为今后解混技术的研究与应用提供参考。
Hyperspectral remote sensing is an advanced technique for earth observation that combines physical imagery and spectral analysis technology. Therefore
hyperspectral remote sensing can obtain fine spectral and rich spatial information from imaged scenes
merging the spatial and spectral information into data cubes. These data cubes exhibit narrow spectral bands and a high spectral resolution
allowing different land cover objects to be distinguished. Hyperspectral remote sensing images
with their high spectral resolution and cube characteristics
have gradually become among the most essential supporting data in remote sensing engineering applications. However
due to spatial resolution limitations
the mixed pixel problem has hindered the development of hyperspectral remote sensing in fine-scale object information extraction. At present
hyperspectral unmixing is one of the most effective analytical techniques for dealing with mixed pixel problems
aiming to break through spatial resolution limitations by analyzing the components within pixels. Hyperspectral unmixing refers to any process that separates pixel spectra from a hyperspectral image into a collection of pure constituent spectra
called endmembers
and a set of corresponding abundance fractions. At each pixel
the endmembers are generally assumed to represent the pure materials in the scene
while the abundances represent the percentage of each endmember. For the fine-scale interpretation of object information
many unmixing methods have been developed for hyperspectral remote sensing images in the remote sensing field over the past 30 years
mitigating the impact of mixed pixel problems on quantitative remote sensing analysis. Currently
with the development of deep learning
an increasing number of deep learning theories and tools are used to deal with mixed pixel problems. Many new methods using deep learning for unmixing have been developed
and unmixing technology research has gradually entered a new stage of development with deep learning. Deep-learning-based methods make better use of hidden information
have a relatively lower dependence on prior knowledge
and have a stronger adaptability to complex scenes than traditional unmixing methods. Although deep learning-based unmixing methods have developed rapidly in recent years and are diverse
the analysis and summary of the work on such methods have not kept up with the pace of technological development. A timely summary of the latest research progress on developing a specific field of research has a significant role in promoting the technology. Thus
this paper sorts out the existing deep learning-based unmixing methods
classifying them according to the adopted spectral mixing models
the deep network training modes
and whether spectral variability is considered. Furthermore
this paper introduces these deep learning-based approaches and summarizes their characteristics
making the use of these methods in special works convenient for users or readers. Finally
the development of deep learning methods is summarized
referring to the current technical status
characteristics
and development prospects. In addition
some existing deep learning unmixing methods were tested in this study and organized to facilitate the research and application of unmixing technology. The development of deep learning will continue to promote the progress of unmixing techniques. In recent years
deep learning-based unmixing methods have developed rapidly and have been gradually used in vegetation distribution investigation and agricultural yield estimation
implying their good development prospect and application value. his paper can provide valuable references for researching unmixing technology in the future.
高光谱遥感混合像元分解深度学习机器学习深度神经网络遥感图像处理遥感智能解译亚像元解译
hyperspectral remote sensingunmixingdeep learningmachine learningdeep neural networkremote sensing image processingremote sensing intelligent interpretationsubpixel interpretation
Bioucas-Dias J M, Plaza A, Camps-Valls G, Scheunders P, Nasrabadi N and Chanussot J. 2013. Hyperspectral remote sensing data analysis and future challenges. IEEE Geoscience and Remote Sensing Magazine, 1(2): 6-36 [DOI: 10.1109/MGRS.2013.2244672http://dx.doi.org/10.1109/MGRS.2013.2244672]
Bioucas-Dias J M, Plaza A, Dobigeon N, Parente M, Du Q, Gader P and Chanussot J. 2012. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(2): 354-379 [DOI: 10.1109/JSTARS.2012.2194696http://dx.doi.org/10.1109/JSTARS.2012.2194696]
Borsoi R A, Imbiriba T and Bermudez J C M. 2020. Deep generative endmember modeling: an application to unsupervised spectral unmixing. IEEE Transactions on Computational Imaging, 6: 374-384 [DOI: 10.1109/TCI.2019.2948726http://dx.doi.org/10.1109/TCI.2019.2948726]
Chen J, Gamba P and Li J. 2023a. MAHUM: a multitasks autoencoder hyperspectral unmixing model. IEEE Transactions on Geoscience and Remote Sensing, 61: 5519516 [DOI: 10.1109/tgrs.2023.3304484http://dx.doi.org/10.1109/tgrs.2023.3304484]
Chen J, Zhao M, Wang X H, Richard C and Rahardja S. 2023b. Integration of physics-based and data-driven models for hyperspectral image unmixing: a summary of current methods. IEEE Signal Processing Magazine, 40(2): 61-74 [DOI: 10.1109/MSP.2022.3208987http://dx.doi.org/10.1109/MSP.2022.3208987]
Cui C Y, Wang X Y, Wang S Y, Zhang L P and Zhong Y F. 2023. Unrolling nonnegative matrix factorization with group sparsity for blind hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 61: 5516712 [DOI: 10.1109/TGRS.2023.3292453http://dx.doi.org/10.1109/TGRS.2023.3292453]
Dobigeon N, Tourneret J Y, Richard C, Bermudez J C M, McLaughlin S and Hero A O. 2014. Nonlinear unmixing of hyperspectral images: models and algorithms. IEEE Signal Processing Magazine, 31(1): 82-94 [DOI: 10.1109/MSP.2013.2279274http://dx.doi.org/10.1109/MSP.2013.2279274]
Dou Z Y, Gao K, Zhang X D, Wang H and Wang J W. 2020. Hyperspectral unmixing using orthogonal sparse prior-based autoencoder with hyper-Laplacian loss and data-driven outlier detection. IEEE Transactions on Geoscience and Remote Sensing, 58(9): 6550-6564 [DOI: 10.1109/TGRS.2020.2977819http://dx.doi.org/10.1109/TGRS.2020.2977819]
Fang H, Li A H, Xu H X and Wang T. 2018. Sparsity-constrained deep nonnegative matrix factorization for hyperspectral unmixing. IEEE Geoscience and Remote Sensing Letters, 15(7): 1105-1109 [DOI: 10.1109/lgrs.2018.2823425http://dx.doi.org/10.1109/lgrs.2018.2823425]
Fang Y, Wang Y X, Xu L L, Zhuo R M, Wong A and Clausi D A. 2022. BCUN: Bayesian fully convolutional neural network for hyperspectral spectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 60: 5523714 [DOI: 10.1109/TGRS.2022.3151004http://dx.doi.org/10.1109/TGRS.2022.3151004]
Feng X R, Li H C, Li J, Du Q, Plaza A and Emery W J. 2018. Hyperspectral unmixing using sparsity-constrained deep nonnegative matrix factorization with total variation. IEEE Transactions on Geoscience and Remote Sensing, 56(10): 6245-6257 [DOI: 10.1109/TGRS.2018.2834567http://dx.doi.org/10.1109/TGRS.2018.2834567]
Feng X R, Li H C, Liu S and Zhang H. 2022. Correntropy-based autoencoder-like NMF with total variation for hyperspectral unmixing. IEEE Geoscience and Remote Sensing Letters, 19: 5500505 [DOI: 10.1109/LGRS.2020.3020896http://dx.doi.org/10.1109/LGRS.2020.3020896]
Gao L R, Han Z, Hong D F, Zhang B and Chanussot J. 2022. CyCU-Net: cycle-consistency unmixing network by learning cascaded autoencoders. IEEE Transactions on Geoscience and Remote Sensing, 60: 5503914 [DOI: 10.1109/TGRS.2021.3064958http://dx.doi.org/10.1109/TGRS.2021.3064958]
Ghosh P, Roy S K, Koirala B, Rasti B and Scheunders P. 2022. Hyperspectral unmixing using transformer network. IEEE Transactions on Geoscience and Remote Sensing, 60: 5535116 [DOI: 10.1109/TGRS.2022.3196057http://dx.doi.org/10.1109/TGRS.2022.3196057]
Guo R, Wang W and Qi H R. 2015. Hyperspectral image unmixing using autoencoder cascade//2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). Tokyo: IEEE: 1-4 [DOI: 10.1109/WHISPERS.2015.8075378http://dx.doi.org/10.1109/WHISPERS.2015.8075378]
Han Z, Gao L R, Zhang B, Sun X and Li Q T. 2020. Nonlinear hyperspectral unmixing algorithm for GF-5 satellite based on deep autoencoder networks. Journal of Remote Sensing (Chinese), 24(4): 388-400
韩竹, 高连如, 张兵, 孙旭, 李庆亭. 2020. 高分五号高光谱图像自编码网络非线性解混. 遥感学报, 24(4): 388-400 [DOI: 10.11834/jrs.20209188http://dx.doi.org/10.11834/jrs.20209188]
Han Z, Hong D F, Gao L R, Yao J, Zhang B and Chanussot J. 2022a. Multimodal hyperspectral unmixing: insights from attention networks. IEEE Transactions on Geoscience and Remote Sensing, 60: 5524913 [DOI: 10.1109/TGRS.2022.3155794http://dx.doi.org/10.1109/TGRS.2022.3155794]
Han Z, Hong D F, Gao L R, Zhang B, Huang M and Chanussot J. 2022b. AutoNAS: automatic neural architecture search for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 60: 5532214 [DOI: 10.1109/tgrs.2022.3186480http://dx.doi.org/10.1109/tgrs.2022.3186480]
Hapke B. 1981. Bidirectional reflectance spectroscopy: 1. Theory. Journal of Geophysical Research: Solid Earth, 86(B4): 3039-3054 [DOI: 10.1029/JB086IB04P03039http://dx.doi.org/10.1029/JB086IB04P03039]
He M Y, Chang W J, Mei S H. 2013. Advance in Feature Mining from Hyperspectral Remote Sensing Data. Spacecraft Recovery and remote sensing, 34(1): 1-12.
何明一,畅文娟,梅少辉. 2013. 高光谱遥感数据特征挖掘技术研究进展. 航天返回与遥感, 34(1): 1-12 [DOI:10.3969/j.issn.1009-8518.2013.01.001http://dx.doi.org/10.3969/j.issn.1009-8518.2013.01.001]
Heylen R, Parente M and Gader P. 2014. A review of nonlinear hyperspectral unmixing methods. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6): 1844-1868 [DOI: 10.1109/JSTARS.2014.2320576http://dx.doi.org/10.1109/JSTARS.2014.2320576]
Hong D F, Gao L R, Yao J, Yokoya N, Chanussot J, Heiden U and Zhang B. 2022. Endmember-guided unmixing network (EGU-Net): a general deep learning framework for self-supervised hyperspectral unmixing. IEEE Transactions on Neural Networks and Learning Systems, 33(11): 6518-6531 [DOI: 10.1109/TNNLS.2021.3082289http://dx.doi.org/10.1109/TNNLS.2021.3082289]
Horn R A and Johnson C R. 2012. Matrix Analysis. 2nd ed. Cambridge: Cambridge University Press
Iordache M D, Bioucas-Dias J M and Plaza A. 2011. Sparse unmixing of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 49(6): 2014-2039 [DOI: 10.1109/TGRS.2010.2098413http://dx.doi.org/10.1109/TGRS.2010.2098413]
Jin Q W, Ma Y, Fan F, Huang J, Mei X G and Ma J Y. 2023. Adversarial autoencoder network for hyperspectral unmixing. IEEE Transactions on Neural Networks and Learning Systems, 34(8): 4555-4569 [DOI: 10.1109/TNNLS.2021.3114203http://dx.doi.org/10.1109/TNNLS.2021.3114203]
Jin Q W, Ma Y, Mei X G and Ma J Y. 2022. TANet: an unsupervised two-stream autoencoder network for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 60: 5506215 [DOI: 10.1109/TGRS.2021.3094884http://dx.doi.org/10.1109/TGRS.2021.3094884]
Keshava N and Mustard J F. 2002. Spectral unmixing. IEEE Signal Processing Magazine, 19(1): 44-57 [DOI: 10.1109/79.974727http://dx.doi.org/10.1109/79.974727]
Khajehrayeni F and Ghassemian H. 2020. Hyperspectral unmixing using deep convolutional autoencoders in a supervised scenario. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 567-576 [DOI: 10.1109/JSTARS.2020.2966512http://dx.doi.org/10.1109/JSTARS.2020.2966512]
Khajehrayeni F and Ghassemian H. 2021. A linear hyperspectral unmixing method by means of autoencoder networks. International Journal of Remote Sensing, 42(7): 2517-2531 [DOI: 10.1080/01431161.2020.1854893http://dx.doi.org/10.1080/01431161.2020.1854893]
Koirala B, Khodadadzadeh M, Contreras C, Zahiri Z, Gloaguen R and Scheunders P. 2019. A supervised method for nonlinear hyperspectral unmixing. Remote Sensing, 11(20): 2458 [DOI: 10.3390/rs11202458http://dx.doi.org/10.3390/rs11202458]
Koirala B, Zahiri Z, Lamberti A and Scheunders P. 2021. Robust supervised method for nonlinear spectral unmixing accounting for endmember variability. IEEE Transactions on Geoscience and Remote Sensing, 59(9): 7434-7448 [DOI: 10.1109/TGRS.2020.3031012http://dx.doi.org/10.1109/TGRS.2020.3031012]
Kong F Q, Chen M Y, Li Y S and Li D. 2022. A global spectral–spatial feature learning network for semisupervised hyperspectral unmixing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15: 3190-3203 [DOI: 10.1109/JSTARS.2022.3168333http://dx.doi.org/10.1109/JSTARS.2022.3168333]
Kong F Q, Zheng Y H, Li D, Li Y S and Chen M Y. 2023. Window transformer convolutional autoencoder for hyperspectral sparse unmixing. IEEE Geoscience and Remote Sensing Letters, 20: 5508305 [DOI: 10.1109/LGRS.2023.3308206http://dx.doi.org/10.1109/LGRS.2023.3308206]
Li H C, Feng X R, Zhai D H, Du Q and Plaza A. 2022. Self-supervised robust deep matrix factorization for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 60: 5513214 [DOI: 10.1109/TGRS.2021.3107151http://dx.doi.org/10.1109/TGRS.2021.3107151]
Li M L, Zhu F, Guo A J X and Chen J. 2019. A graph regularized multilinear mixing model for nonlinear hyperspectral unmixing. Remote Sensing, 11(19): 2188 [DOI: 10.3390/rs11192188http://dx.doi.org/10.3390/rs11192188]
Min A Y, Guo Z Y, Li H and Peng J T. 2022. JMnet: joint metric neural network for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 60: 5505412 [DOI: 10.1109/TGRS.2021.3069476http://dx.doi.org/10.1109/TGRS.2021.3069476]
Nobbs J H. 1985. Kubelka—Munk theory and the prediction of reflectance. Review of Progress in Coloration and Related Topics, 15(1): 66-75 [DOI: 10.1111/j.1478-4408.1985.tb03737.xhttp://dx.doi.org/10.1111/j.1478-4408.1985.tb03737.x]
Ozkan S, Kaya B and Akar G B. 2019a. EndNet: sparse AutoEncoder network for endmember extraction and hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 57(1): 482-496 [DOI: 10.1109/TGRS.2018.2856929http://dx.doi.org/10.1109/TGRS.2018.2856929]
Ozkan S and Akar G B. 2019b. Improved deep spectral convolution network for hyperspectral unmixing with multinomial mixture kernel and endmember uncertainty. arXiv preprint arXiv: 1808.01104
Palsson B, Sigurdsson J, Sveinsson J R and Ulfarsson M O. 2018. Hyperspectral unmixing using a neural network autoencoder. IEEE Access, 6: 25646-25656 [DOI: 10.1109/ACCESS.2018.2818280http://dx.doi.org/10.1109/ACCESS.2018.2818280]
Palsson B, Sveinsson J R and Ulfarsson M O. 2019. Spectral-spatial hyperspectral unmixing using multitask learning. IEEE Access, 7: 148861-148872 [DOI: 10.1109/ACCESS.2019.2944072http://dx.doi.org/10.1109/ACCESS.2019.2944072]
Palsson B, Ulfarsson M O and Sveinsson J R. 2021. Convolutional autoencoder for spectral–spatial hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 59(1): 535-549 [DOI: 10.1109/TGRS.2020.2992743http://dx.doi.org/10.1109/TGRS.2020.2992743]
Palsson F, Sigurdsson J, Sveinsson J R and Ulfarsson M O. 2017. Neural network hyperspectral unmixing with spectral information divergence objective//2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth: IEEE: 755-758 [DOI: 10.1109/IGARSS.2017.8127062http://dx.doi.org/10.1109/IGARSS.2017.8127062]
Qi L, Chen Z W, Gao F, Dong J Y, Gao X B and Du Q. 2023. Multiview spatial-spectral two-stream network for hyperspectral image unmixing. IEEE Transactions on Geoscience and Remote Sensing, 61: 5502016 [DOI: 10.1109/TGRS.2023.3237556http://dx.doi.org/10.1109/TGRS.2023.3237556]
Qi L, Gao F, Dong J Y, Gao X B and Du Q. 2022. SSCU-Net: spatial-spectral collaborative unmixing network for hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 60: 5407515 [DOI: 10.1109/TGRS.2022.3150970http://dx.doi.org/10.1109/TGRS.2022.3150970]
Qian Y T, Xiong F C, Qian Q P and Zhou J. 2020. Spectral mixture model inspired network architectures for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 58(10): 7418-7434 [DOI: 10.1109/TGRS.2020.2982490http://dx.doi.org/10.1109/TGRS.2020.2982490]
Qu Y and Qi H R. 2019. uDAS: an untied denoising autoencoder with sparsity for spectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 57(3): 1698-1712 [DOI: 10.1109/TGRS.2018.2868690http://dx.doi.org/10.1109/TGRS.2018.2868690]
Rasti B and Koirala B. 2022a. SUnCNN: sparse unmixing using unsupervised convolutional neural network. IEEE Geoscience and Remote Sensing Letters, 19: 5508205 [DOI: 10.1109/lgrs.2021.3100992http://dx.doi.org/10.1109/lgrs.2021.3100992]
Rasti B, Koirala B and Scheunders P. 2022b. HapkeCNN: blind nonlinear unmixing for intimate mixtures using hapke model and convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 60: 5536315 [DOI: 10.1109/TGRS.2022.3202490http://dx.doi.org/10.1109/TGRS.2022.3202490]
Rasti B, Koirala B, Scheunders P and Chanussot J. 2022c. MiSiCNet: minimum simplex convolutional network for deep hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 60: 5522815 [DOI: 10.1109/TGRS.2022.3146904http://dx.doi.org/10.1109/TGRS.2022.3146904]
Rasti B, Koirala B, Scheunders P and Ghamisi P. 2022d. UnDIP: hyperspectral unmixing using deep image prior. IEEE Transactions on Geoscience and Remote Sensing, 60: 5504615 [DOI: 10.1109/TGRS.2021.3067802http://dx.doi.org/10.1109/TGRS.2021.3067802]
Shahid K T and Schizas I D. 2022. Unsupervised hyperspectral unmixing via nonlinear autoencoders. IEEE Transactions on Geoscience and Remote Sensing, 60: 5506513 [DOI: 10.1109/TGRS.2021.3077833http://dx.doi.org/10.1109/TGRS.2021.3077833]
Shao Y T, Liu Q C and Xiao L. 2023. IVIU-Net: implicit variable iterative unrolling network for hyperspectral sparse unmixing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16: 1756-1770 [DOI: 10.1109/JSTARS.2023.3241249http://dx.doi.org/10.1109/JSTARS.2023.3241249]
Shi S K, Zhao M, Zhang L J, Altmann Y and Chen J. 2022. Probabilistic generative model for hyperspectral unmixing accounting for endmember variability. IEEE Transactions on Geoscience and Remote Sensing, 60: 5516915 [DOI: 10.1109/TGRS.2021.3121799http://dx.doi.org/10.1109/TGRS.2021.3121799]
Somers B, Cools K, Delalieux S, Stuckens J, Van der Zande D, Verstraeten W W and Coppin P. 2009. Nonlinear hyperspectral mixture analysis for tree cover estimates in orchards. Remote Sensing of Environment, 113(6): 1183-1193 [DOI: 10.1016/j.rse.2009.02.003http://dx.doi.org/10.1016/j.rse.2009.02.003]
Su Y C, Li J, Plaza A, Marinoni A, Gamba P and Chakravortty S. 2019. DAEN: deep autoencoder networks for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 57(7): 4309-4321 [DOI: 10.1109/TGRS.2018.2890633http://dx.doi.org/10.1109/TGRS.2018.2890633]
Su Y C, Marinoni A, Li J, Plaza J and Gamba P. 2018. Stacked nonnegative sparse autoencoders for robust hyperspectral unmixing. IEEE Geoscience and Remote Sensing Letters, 15(9): 1427-1431 [DOI: 10.1109/LGRS.2018.2841400http://dx.doi.org/10.1109/LGRS.2018.2841400]
Su Y C, Xu X, Li J, Qi H R, Gamba P and Plaza A. 2021. Deep autoencoders with multitask learning for bilinear hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 59(10): 8615-8629 [DOI: 10.1109/TGRS.2020.3041157http://dx.doi.org/10.1109/TGRS.2020.3041157]
Tang M F, Qu Y and Qi H R. 2020. Hyperspectral nonlinear unmixing via generative adversarial network//IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa: IEEE: 2404-2407 [DOI: 10.1109/IGARSS39084.2020.9324087http://dx.doi.org/10.1109/IGARSS39084.2020.9324087]
Tong Q X, Zhang B and Zhang L F. 2016. Current progress of hyperspectral remote sensing in China. Journal of Remote Sensing, 20(5): 689-707
童庆禧, 张兵, 张立福. 2016. 中国高光谱遥感的前沿进展. 遥感学报, 20(5): 689-707 [DOI: 10.11834/jrs.20166264http://dx.doi.org/10.11834/jrs.20166264]
Wan L L, Chen T, Plaza A and Cai H J. 2021. Hyperspectral unmixing based on spectral and sparse deep convolutional neural networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 11669-11682 [DOI: 10.1109/JSTARS.2021.3126755http://dx.doi.org/10.1109/JSTARS.2021.3126755]
Wang L G, Wang L F, Wang Q M and Bruzzone L. 2022. RSCNet: a residual self-calibrated network for hyperspectral image change detection. IEEE Transactions on Geoscience and Remote Sensing, 60: 5529917 [DOI: 10.1109/TGRS.2022.3177478http://dx.doi.org/10.1109/TGRS.2022.3177478]
Wang M, Zhao M, Chen J and Rahardja S. 2019. Nonlinear unmixing of hyperspectral data via deep autoencoder networks. IEEE Geoscience and Remote Sensing Letters, 16(9): 1467-1471 [DOI: 10.1109/LGRS.2019.2900733http://dx.doi.org/10.1109/LGRS.2019.2900733]
Wang Z C, Zhuang L N, Gao L R, Marinoni A, Zhang B and Ng M K. 2020. Hyperspectral nonlinear unmixing by using plug-and-play prior for abundance maps. Remote Sensing, 12(24): 4117 [DOI: 10.3390/rs12244117http://dx.doi.org/10.3390/rs12244117]
Xiong F C, Zhou J, Tao S Y, Lu J F and Qian Y T. 2022. SNMF-Net: learning a deep alternating neural network for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 60: 5510816 [DOI: 10.1109/TGRS.2021.3081177http://dx.doi.org/10.1109/TGRS.2021.3081177]
Xu X, Song X Y, Li T, Shi Z W and Pan B. 2022. Deep autoencoder for hyperspectral unmixing via global-local smoothing. IEEE Transactions on Geoscience and Remote Sensing, 60: 5524216 [DOI: 10.1109/TGRS.2022.3152782http://dx.doi.org/10.1109/TGRS.2022.3152782]
Yang B and Wang B. 2018. Band-wise nonlinear unmixing for hyperspectral imagery using an extended multilinear mixing model. IEEE Transactions on Geoscience and Remote Sensing, 56(11): 6747-6762 [DOI: 10.1109/TGRS.2018.2842707http://dx.doi.org/10.1109/TGRS.2018.2842707]
Zhang B. 2016. Advancement of hyperspectral image processing and information extraction. Journal of Remote Sensing, 20(5): 1062-1090
张兵. 2016. 高光谱图像处理与信息提取前沿. 遥感学报, 20(5): 1062-1090 [DOI: 10.11834/jrs.20166179http://dx.doi.org/10.11834/jrs.20166179]
Zhang B and Sun X. 2015. Hyperspectral images unmixing[M]. Beijing: Science Press
张兵, 孙旭. 2015. 高光谱图像混合像元分解. 北京: 科学出版社
Zhang L P, Du B and Zhang L F. 2014. Hyperspectral Image Processing[M]. Beijing: Science Press
张良培, 杜博, 张乐飞. 2014. 高光谱遥感影像处理. 北京: 科学出版社
Zhang X R, Sun Y J, Zhang J Y, Wu P and Jiao L C. 2018. Hyperspectral unmixing via deep convolutional neural networks. IEEE Geoscience and Remote Sensing Letters, 15(11): 1755-1759 [DOI: 10.1109/LGRS.2018.2857804http://dx.doi.org/10.1109/LGRS.2018.2857804]
Zhao M, Wang M, Chen J and Rahardja S. 2021a. Hyperspectral unmixing via deep autoencoder networks for a generalized linear-mixture/nonlinear-fluctuation model. arXiv preprint arXiv: 1904.13017
Zhao M, Yan L B and Chen J. 2021b. LSTM-DNN based autoencoder network for nonlinear hyperspectral image unmixing. IEEE Journal of Selected Topics in Signal Processing, 15(2): 295-309 [DOI: 10.1109/JSTSP.2021.3052361http://dx.doi.org/10.1109/JSTSP.2021.3052361]
Zhao M, Shi S K, Chen J and Dobigeon N. 2022a. A 3-D-CNN framework for hyperspectral unmixing with spectral variability. IEEE Transactions on Geoscience and Remote Sensing, 60: 5521914 [DOI: 10.1109/TGRS.2022.3141387http://dx.doi.org/10.1109/TGRS.2022.3141387]
Zhao M, Wang M, Chen J and Rahardja S. 2022b. Hyperspectral unmixing for additive nonlinear models with a 3-D-CNN autoencoder network. IEEE Transactions on Geoscience and Remote Sensing, 60: 5509415 [DOI: 10.1109/TGRS.2021.3098745http://dx.doi.org/10.1109/TGRS.2021.3098745]
Zhao M, Wang X H, Chen J and Chen W. 2022c. A plug-and-play priors framework for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 60: 5501213 [DOI: 10.1109/TGRS.2020.3047479http://dx.doi.org/10.1109/TGRS.2020.3047479]
Zhou C and Rodrigues M R D. 2022. ADMM-based hyperspectral unmixing networks for abundance and endmember estimation. IEEE Transactions on Geoscience and Remote Sensing, 60: 5520018 [DOI: 10.1109/TGRS.2021.3136336http://dx.doi.org/10.1109/TGRS.2021.3136336]
Zhu Q Q, Deng W H, Zheng Z, Zhong Y F, Guan Q F, Lin W H, Zhang L P and Li D R. 2022. A spectral-spatial-dependent global learning framework for insufficient and imbalanced hyperspectral image classification. IEEE Transactions on Cybernetics, 52(11): 11709-11723 [DOI: 10.1109/tcyb.2021.3070577http://dx.doi.org/10.1109/tcyb.2021.3070577]
Zhu Z Q, Su Y C, Li P F, Bai J Y, Liu Y and Liu F. 2023. Spectral-spatial hyperspectral unmixing using deep double-constraints convolutional network. Journal of Signal Processing, 39(1): 128-142
朱治青, 苏远超, 李朋飞, 白晋颖, 刘英, 刘峰. 2023. 双约束深度卷积网络的高光谱图像空谱解混方法. 信号处理, 39(1): 128-142 [DOI: 10.16798/j.issn.1003-0530.2023.01.013http://dx.doi.org/10.16798/j.issn.1003-0530.2023.01.013]
Zhuang L N. 2015. Hyperspectral Mixture Analysis Incorporating Endmember Variability[D].Beijing:Chinese Academy of Sciences
庄丽娜. 2015. 基于端元变异性分析的高光谱混合像元分解研究. 北京: 中国科学院大学
相关作者
相关机构