摘要:植被光合有效辐射吸收比率FPAR(Fraction of absorbed Photosynthetically Active Radiation)反映了植被冠层的光学特性,是表征植被光合作用水平和生长状态的重要参量,因此成为全球变化研究中多种过程模型的重要输入参数。随着定量遥感研究的深入和新型传感器的使用,从区域到全球尺度上的FPAR遥感估算方法不断提出,多样化的遥感FPAR产品越来越多地应用于碳循环、能量循环、生产力估算及作物估产等研究领域。本文梳理了遥感估算的植被光合有效辐射的相关概念和算法,并着重对过去十年间遥感估算FPAR的新进展进行了系统总结和探讨。研究表明,近年来FPAR遥感的研究工作一方面聚焦于对现有算法的改进与各类型产品的验证,更多的研究则侧重于FPAR概念体系的拓展,叶片、叶绿素水平的FPAR估算,直射光、散射光的FPAR建模等新方向逐渐成为研究热点。
摘要:目前,估算高分辨率叶面积指数LAI(Leaf Area Index)的常用方法是采用大量地面测量数据和遥感数据建立统计模型,再用统计模型估算LAI。然而,与农田地面测量实验相比,森林地面测量实验获取的观测数据更加有限,这使得基于统计模型的森林高分辨率LAI的估算精度低,难以满足应用需求。为此,本文提出一种基于森林模型参数先验知识、使用森林研究区少量的LAI地面测量数据和归一化植被指数NDVI数据估算森林高分辨率LAI的方法。首先,获取全球20个森林实验区的LAI地面测量数据和NDVI数据,建立LAI-NDVI统计模型并提取森林模型参数的先验知识。然后,以一个新的森林站点Concepción作为研究区,将该研究区的数据分为建模数据和验证数据两个部分。使用研究区有限的建模数据对森林模型参数先验知识进行本地化校正得到优化模型,优化模型用于估算森林高分辨率LAI,使用验证数据评价LAI的估算精度。同时,选取了Camerons站点、Gnangara站点、Hirsikangas站点评价本文方法的LAI估算精度。使用地面测量LAI验证基于森林模型参数先验知识估算高分辨率LAI的结果精度,经验证4个森林站点的均方根误差分别为0.6680,0.4449,0.2863,0.5755。研究结果表明:在仅有少量观测数据时,采用本方法能有效地提高森林高分辨率LAI的估算精度。因此,本方法可为森林高分辨率LAI的遥感估算提供参考。