摘要:叶面积指数LAI(Leaf Area Index)是表征叶片疏密程度和冠层结构特征的重要植被参数,在气候变化、作物生长模型以及碳、水循环研究中发挥着重要作用。遥感是获取区域及全球尺度LAI的一个重要手段,当前LAI产品主要基于遥感数据反演得到,但是多数LAI产品算法并未考虑地形特征的影响,导致山地LAI遥感反演精度不确定性大。提高山地LAI遥感反演精度亟需考虑地形因子对冠层反射率的影响,其中山地冠层反射率模型和遥感数据地形校正是提升山地LAI遥感反演精度的关键。本文围绕山地LAI遥感反演理论与方法,综合分析了国内外山地冠层反射率模型和地形校正模型的研究进展,总结了目前山地LAI遥感反演存在的问题,并讨论了未来研究的发展趋势。
摘要:第二代星载激光雷达冰、云和陆地测高卫星ICESat-2(The Ice, Cloud, and Land Elevation Satellite-2)搭载了先进光子计数式激光雷达,使用了全新的微脉冲多波束光子计数式激光雷达。由于光子计数式激光雷达的自身特点,其光子云数据具有受噪声光子影响大、信噪比与扫描时间相关、光子分布密度不均匀等问题,目前开发的去噪算法并不能很好的应用于不同的光子云数据。基于以上问题,本文提出一种改进的去噪算法,首先分析光子云内部特征并自适应选择最优参数进行粗去噪,然后进行两次精去噪,最后对光子云进行分类并拟合出地面线及冠层顶线,为提取森林冠层高度提供基础。使用该算法对MABEL数据进行去噪实验,实验结果表明:该去噪算法的一次去噪对不同环境下MABEL数据在夜间的去噪平均精确度为94.5%,F1-score为96.3%,日间平均精确度为86.7%,F1-score为91.7%,且三次去噪算法完成后能够显著提升光子云去噪精度。实验证明该算法对MABEL光子云数据具有较好去噪效果和稳定性,可为ICESat-2数据处理提供参考。本文的光子分类算法能够从光子数据中提取冠层顶点、地面点及林内光子并在此算法中进一步精确去除剩余噪点,最终光子分类结果显示该算法能够从复杂光子云数据中提取森林剖面结构。