最新刊期

    2022 26 4
    封面故事

      数据集论文

    • 冯权泷,陈泊安,李国庆,姚晓闯,高秉博,张连翀
      2022, 26(4): 589-605. DOI: 10.11834/jrs.20221162
      遥感影像样本数据集研究综述
      摘要:随着机器学习、深度学习等人工智能技术在遥感领域的不断应用与发展,基于海量样本的数据驱动模型已经成为遥感影像信息提取的一种新的研究范式,其对样本数据的规模、质量、多样性等提出了更高要求。最近,国内外众多学者和研究机构相继发布了一系列遥感影像样本数据集,为大数据时代下遥感影像的信息提取和智能解译等奠定了研究基础。然而目前尚缺乏对上述影像样本数据集的综合分析,针对这一问题,本文在文献检索与分析的基础上,归纳总结了124个具有一定影响力且应用广泛的遥感影像样本数据集并对其元数据进行了分析,并提供了数据来源、应用领域与关键词的发展变化,分析了数据集在空间、时间、光谱分辨率上的差异,以应用领域为依据将其划分为场景识别、土地覆被/利用分类、专题要素提取、变化检测、目标检测、语义分割等8个类别并以部分数据为例进行了具体分析,总结了深度学习模型在数据集上的研究进展,并针对稀疏样本导致的模型过拟合问题,探讨了样本时空迁移、小样本和零样本学习、样本主动发现、样本生成等在遥感影像信息提取中的应用前景。本文首次对遥感影像样本数据集进行了综述研究,可为相关领域科研人员提供数据参考。  
      关键词:遥感影像;样本数据集;机器学习;深度学习   
      5500
      |
      2392
      |
      8
      <HTML>
      <网络PDF><Enhanced-PDF><Meta-XML>
      <引用本文> <批量引用> 25459079 false
      发布时间:2022-11-01
    • 欧阳淑冰,陈伟涛,李显巨,董玉森,王力哲
      2022, 26(4): 606-619. DOI: 10.11834/jrs.20221385
      植被覆盖区高精度遥感地貌场景分类数据集
      摘要:地貌数据集是实现地貌自动分类和加深对地貌形态学认识的重要支撑数据之一。当前缺乏高精度地貌成因类数据集,制约了地貌遥感自动解译的发展。本文在中国东北地区以沟—弧—盆体系为主的天山—兴蒙造山系中,针对强烈的构造运动和新生代以来的火山作用、流水作用形成的地貌成因类型,制作了构造地貌、火山熔岩地貌和流水地貌3类场景数据集(GOS10m)。数据集覆盖面积约5000 km2,包括哨兵2号可见光遥感影像、SRTM1 DEM及基于DEM提取的7个地貌形态参数(山体晕渲图、坡度、DEM局部平均中值、标准偏差、坡向—向北方向偏移量、坡向—向东方向偏移量和相对偏离平均值)。单张样本图为64像素×64像素,空间分辨率为10 m。采用多模态深度学习神经网络对数据进行训练并分类,平均测试精度可达到82.63%,表明构建的数据集具有较高的质量。可为地貌成因遥感自动分类研究以及推动遥感地貌智能解译的向前发展,提供数据集支撑。  
      关键词:地貌数据集;地貌分类;深度学习;遥感场景分类;植被覆盖   
      1598
      |
      344
      |
      2
      <HTML>
      <网络PDF><Enhanced-PDF><Meta-XML>
      <引用本文> <批量引用> 25459511 false
      发布时间:2022-11-01
    • 吴樊,张红,王超,李璐,李娟娟,陈卫荣,张波
      2022, 26(4): 620-631. DOI: 10.11834/jrs.20220296
      SARBuD 1.0: 面向深度学习的GF-3 精细模式SAR建筑数据集
      摘要:合成孔径雷达SAR(Synthetic Aperture Radar)是开展城市建筑区信息获取与动态监测的重要数据源。本文建立了一个面向深度学习建筑区提取的中高分辨率SAR建筑区数据集SARBuD1.0 (SAR BUilding Dataset)。该数据集包含了覆盖中国不同区域的27景高分三号(GF-3)精细模式SAR图像,并从中获取了建筑区共计60000个SAR样本数据,结合光学图像与专家解译,制作了与样本数据对应的标签图像。SARBuD1.0数据集包含了不同地形场景类型、不同分布类型、不同区域的建筑区。该数据集可支持研究者对建筑区进行图像特征分析、辅助图像理解,并可对当前热点深度学习方法提供训练、测试数据支持。本文以山区建筑为例,使用传统纹理特征与深度学习特征对建筑区进行了特征分析与比较,相比于传统的人工设计的纹理特征,卷积神经网络具有更深、更多的特征,利用网络模型浅层的不同卷积核采样可得到各种纹理特征,在网络的深层卷积结构中可获取代表着类别的深层语义特征,使得分类器能更好地检测并提取图像中指定的目标。基于本数据集利用深度学习方法对不同地形区域的建筑区进行提取实验。实验结果表明基于本数据集训练的深度学习模型,对建筑区提取可以取得良好的结果,说明该数据集可以很好支持面向大数据的深度学习方法。其他学者可以基于SARBuD1.0数据集开展建筑区图像特征分析与语义分割提取等方面的研究。  
      关键词:遥感;合成孔径雷达;建筑;数据集;深度学习;高分三号;语义分割   
      2269
      |
      521
      |
      0
      <HTML>
      <网络PDF><Enhanced-PDF><Meta-XML>
      <引用本文> <批量引用> 25459647 false
      发布时间:2022-11-01

      中国遥感卫星

    • 张立福,赵晓阳,孙雪剑,黄海,彭明媛,岑奕,涂宽
      2022, 26(4): 632-645. DOI: 10.11834/jrs.20229318
      高分五号高光谱数据融合方法比较
      摘要:数据融合是解决高光谱卫星在时空分辨率等指标上受限的有效途径,探讨不同方法在GF-5高光谱数据上的融合效果,对GF-5高光谱数据的信息挖掘与推广应用有着重要意义。本文本着算法简单易用、适于推广的原则,采用GS(Gram-Schmidt)葛兰—施密特正交变换融合算法、GSA(GS Adaptive)自适应GS融合算法、CNMF(Coupled Non-negative Matrix Factorization)耦合非负矩阵分解融合算法、CRISP-W(Color Resolution Improvement Software Package with Wavelet transform)基于小波变换和CRISP-B(Color Resolution Improvement Software Package with Butterworth)基于巴特沃斯滤波器的分辨率提升融合算法、GLP(Generalized Laplacian Pyramid)广义拉普拉斯金字塔融合算法共6种融合方法,分别对BJ-2、GF-2、GF-1、GF-1C、GF-1D国产卫星多光谱数据与GF-5高光谱数据进行融合实验。通过目视分析、指标评价(相关系数、通用图像质量指标、峰值信噪比、光谱角、全局综合误差)、分类应用、时间成本4种方式对融合结果进行综合比较分析。结果表明,相融合的一组图像系列相同、空间分辨率相差越小,融合结果越好。CRISP-B、CRISP-W、GLP在提升空间分辨率、光谱保真度方面能达到较好的平衡,空间重建方面,GLP稍优且更稳定,CRISP-B、CRISP-W则在光谱信息保持方面稳定性更强且效果更好。数据源会对融合方法产生一定的影响,在光谱特征信息提取、分析等对光谱保真度要求高的工作中,GLP更适合同源数据(如GF-5与GF-1/1C/1D/2)融合,而在多源数据间(如GF-5与BJ-2)进行融合时,则优先选择CRISP-W。CNMF存在一定程度的色彩畸变,且运行时间较长。GSA、GS融合效果最差,其中,GSA不论是光谱保持能力还是空间分辨率提升能力均较GS更稳定。在小样本高光谱图像分类应用中,CRISP-B融合结果分类效果稳定,分类精度较高。GSA融合结果空间细节丰富,虽光谱失真较为严重,但同时增大了地物光谱分离度,仍适用于准确勾勒建筑物、道路等地物。本研究为GF-5高光谱数据与其他国产卫星多光谱数据融合方法的选择提供参考,有助于高分五号高光谱数据的应用与推广。  
      关键词:高光谱遥感;高分五号;国产卫星;数据融合;融合方法评价   
      1414
      |
      701
      |
      1
      <HTML>
      <网络PDF><Enhanced-PDF><Meta-XML>
      <引用本文> <批量引用> 25459644 false
      发布时间:2022-11-01
    • 隋淞蔓,夹尚丰,胡学谦
      2022, 26(4): 646-656. DOI: 10.11834/jrs.20220352
      统一样本云检测技术在GF-6 WFV上的改进与应用
      摘要:目前基于深度学习的云检测方法,受训练样本限制,算法难以推广及应用。为了快速实现针对多种传感器的高精度的云检测,Sun等(2020)提出统一样本云检测方法。基于AVIRIS高光谱样本库模拟出待检测传感器的云和晴空地表像元,将模拟得到的多光谱样本数据输入到BP神经网络中进行逐像元分类,生成云检测模型,实现Landsat 8 OLI等宽光谱传感器较高精度的云检测。该方法基于统一样本模拟出不同传感器的样本像元库,适用于多种传感器的云检测。由于Landsat 8 OLI波段较多,波谱范围覆盖宽,容易实现云的高精度识别。为了进一步提高其在光谱范围较窄的GF-6 WFV数据上的云检测应用精度,在模拟出的样本库中加入GF-6 WFV数据典型高亮地表像元。通过目视解译对云检测结果进行精度验证,结果表明,该算法利用可见光和近红外通道的遥感数据可以高精度的识别出植被、水体、建筑、裸地等地表类型上空的厚云、碎云和薄云。改进后的云检测算法,云像元平均正确率达到88.40%,在高亮地表上空云像元正确率达到87.40%,在不同地表类型上空的云像元平均正确率为92.60%。结果表明,加入高反射率地物的算法可以利用有限波段实现云和地表的高精度分离。  
      关键词:云检测;GF-6 WFV数据;高光谱像元库;亮地表;深度学习算法   
      873
      |
      359
      |
      1
      <HTML>
      <网络PDF><Enhanced-PDF><Meta-XML>
      <引用本文> <批量引用> 25459865 false
      发布时间:2022-11-01

      生态与环境

    • 丁明泽,雍斌,杨泽康
      2022, 26(4): 657-671. DOI: 10.11834/jrs.20220240
      全球降水观测计划多卫星联合反演降水产品的极端降水监测潜力研究
      摘要:基于全国自动站与CMORPH融合降水数据集,综合评估全球降水计划(GPM)下的IMERG与GSMaP的4套纯卫星降水数据,从极端降水指标、极端降水事件探测能力、对于不同历时的极端降水事件精度评估3个方面研究纯卫星降水产品监测极端降水的能力。依据极端降水的阈值将研究区分为3个区域进行研究,结果表明:(1)在RX1指标中,IMERG、GSMaP数据均在受季风影响的复杂地形区域呈现出明显的高估状态,在其余地区存在不同程度的低估现象;在R95pTOT指标中,卫星数据均表现较好,与地面参考数据具有较高的相关性。(2)在极端降水事件探测方面,4套纯卫星产品在东北地区的表现均优于其他区域;GSMaP表现优于IMERG数据,具有较低的误报率,但对极端降水的反演精度较低。(3)在不同历时的极端降水事件精度评估中,IMERG、GSMaP卫星降水产品在历时较长的极端降水事件中的表现较好,具有更高的精度;对于极端日降水事件,卫星降水产品在高雨强下的误差显著性十分明显,远远高于复杂地形对卫星降水反演精度的影响,导致卫星降水在复杂地形区域(Ⅲ区)的表现优于其他区域。总体上,IMERG产品在研究区对极端降水的监测能力优于GSMaP产品,其中又以IMERG_Late表现最佳;4套卫星降水产品均能表现出研究区的极端降水区域特征,但在研究区大部分区域呈现出低估状态,卫星降水产品对于雨强的误差订正仍是未来极端降水反演的重点与难点之一。  
      关键词:遥感;IMERG;GSMaP;卫星降水;极端降水;GPM;误差特性   
      1229
      |
      291
      |
      3
      <HTML>
      <网络PDF><Enhanced-PDF><Meta-XML>
      <引用本文> <批量引用> 25459697 false
      发布时间:2022-11-01
    • 赵欣怡,田波,牛莹,陈春鹏,周云轩
      2022, 26(4): 672-682. DOI: 10.11834/jrs.20229303
      Sentinel-1时序后向散射特征的海岸带盐沼植被分类——以长江口为例
      摘要:盐沼是中高纬度海岸带区域生产力极高的生态系统,不同种类盐沼植被提供的生态服务功能具有明显差异。围垦、互花米草入侵、海平面上升等人类活动和自然要素复合作用,导致中国海岸带盐沼植被结构和空间分布快速变化。现有光学遥感方法在海岸带区域受潮汐、云雾干扰严重;高光谱、LiDAR等数据方法难以大范围高时效获取盐沼植被信息。本文以长江河口为研究区域,提出了基于植被物候期多时相雷达后向散射特征优选的海岸带盐沼植被分类方法。采用Sentinel-1雷达数据,分析盐沼、潮间森林沼泽、光滩和水体的雷达后向散射全年时序特征。结合盐沼植被物候特点,基于分离阈值法计算典型盐沼植被月际后向散射特征间分离度。根据最优时序雷达分类特征,采用随机森林方法获取盐沼植被种类、结构和空间分布。结果表明:(1)全年VH极化后向散射均值能较好将水体、光滩、潮间森林沼泽与盐沼区分。(2)4月VV极化、11月VH极化与3月VV极化后向散射均值分别为海三棱藨草/藨草、互花米草与芦苇的最优分类特征。(3)基于年际和月际时序雷达最优特征和随机森林分类算法获得的盐沼植被总体分类精度达到85%,Kappa系数为0.80。相较光学遥感,雷达遥感影像可有效获取盐沼植被年际、月际时序雷达后向散射特征,准确得到海岸带盐沼植被空间动态,在海岸带研究中具有较好的应用潜力,可为海岸带生物多样性保护、湿地生态系统功能提升与生态环境管理等提供重要技术手段和数据支撑。  
      关键词:遥感;Sentinel-1;盐沼植被;时序分析;物候特征;长江口   
      1128
      |
      348
      |
      4
      <HTML>
      <网络PDF><Enhanced-PDF><Meta-XML>
      <引用本文> <批量引用> 25459133 false
      发布时间:2022-11-01
    • 刘英,党超亚,岳辉,吕春光,钱嘉鑫,朱蓉
      2022, 26(4): 683-697. DOI: 10.11834/jrs.20229338
      改进型遥感生态指数与RSEI的对比分析
      摘要:为了更好对城市生态质量进行监测和评价,构建一个更精确的城市遥感生态指数十分必要。本文结合绿度、湿度、干度、热度和空气质量指标采用主成分分析PCA(Principal Component Analysis) 构建改进型遥感生态指数MRSEI(Modified Remote Sensing Ecological Index);利用熵权法计算压力—状态—响应模型PSR (Pressure State Response Model)中各指标的权重,通过加权法获得生态环境指数EI(Eco-environmental Index)与MRSEI和RSEI进行比较。同时,综合绿度、热度、湿度、干度指标利用核主成分分析KPCA(Kernel Principal Component Analysis)构建非线性遥感生态指数NRSEI(Nonlinear Remote Sensing Ecological Index);最后将MRSEI、NRSEI分别与常用的遥感生态指数RSEI(Remote Sensing Ecological Index)进行对比和分析。结果表明,MRSEI可体现空气质量空间分布对城市生态质量的影响,2014年和2017年MRSEI与EI的相关系数分别是0.829和0.857(P<0.01),比RSEI与EI的相关系数分别提高0.035和0.055。在主城区MRSEI和RSEI与EI比较结果表明,MRSEI的平均绝对误差、均方根误差和平均相对误差均小于RSEI,表明MRSEI更适用于城市生态质量评价,空气质量指标对北京市生态环境监测、评价是非常重要的。同时,在实验区KPCA第一主成分贡献率比PCA提高了11.94%—21.45%;各个指标与NRSEI相关系数比与RSEI提高了0.128—0.198;NRSEI可体现生态等级间的过渡,RSEI对生态环境差的区域有时低估,对生态环境优的区域有时高估,NRSEI与遥感影像定性反映的生态状况更加相符。在监测空气质量严峻的北京市生态质量方面,MRSEI优于RSEI;顾及各指标间的弱线性或非线性问题的NRSEI监测生态环境质量效果优于利用线性变换的RSEI。  
      关键词:遥感;改进型遥感生态指数;非线性遥感生态指数;空气质量指标;核主成分分析;压力—状态—响应模型   
      1740
      |
      634
      |
      8
      <HTML>
      <网络PDF><Enhanced-PDF><Meta-XML>
      <引用本文> <批量引用> 25459237 false
      发布时间:2022-11-01

      智能遥感处理与分析

    • 贾莉,郑柯,唐娉,霍连志
      2022, 26(4): 698-710. DOI: 10.11834/jrs.20229322
      地形校正对U-Net深度神经网络分类器分类精度的影响
      摘要:在国土资源监测、森林资源调查等多个领域中,基于遥感影像的分类技术受到了广泛应用。在利用传统分类器对地表覆盖分类提取中,地形效应是制约分类精度提升的一种因素,其影响可通过适当的校正模型减弱,且已证明地形校正能够对分类精度的提升起到积极作用。相比于传统分类器,基于深度学习理论的深度神经网络分类器具有深层特征学习和表达的优势,在图像分类领域兴起并逐渐用于土地覆盖分类且取得了不错的精度提升。本文初步探究了地形校正在利用深度神经网络分类器U-Net进行地表覆盖分类时对分类精度的影响情况。以Landsat 8 OLI 30 m影像为数据源,结合GDEM_V2 30 m地形数据,在GlobeLand 30和全国30 m森林分类结果的基础上,利用U-Net深度神经网络分类器实现了山区地表覆盖分类提取,并就不同训练样本获取方式及不同精细程度分类体系下地形校正前后的分类精度做了对比分析。分类结果表明:(1)规则网格裁切和坡向辅助裁切这两种训练样本获取方式下,地形校正后的分类精度较校正前不变或有极小幅度的降低,降低范围在0.9%—1.39%;(2)在对更精细的森林类型分类中,地形校正后的分类精度较校正前下降了1.66%。本文初步探究得到:在规则网格裁切和坡向辅助裁切这两种训练样本获取方式及不同精细程度的分类体系下,地形校正均未能提高U-Net深度神经网络分类器的分类精度。  
      关键词:遥感分类;深度神经网络;U-Net模型;地形校正;地表覆盖分类;分类精度   
      903
      |
      341
      |
      1
      <HTML>
      <网络PDF><Enhanced-PDF><Meta-XML>
      <引用本文> <批量引用> 25459391 false
      发布时间:2022-11-01
    • 奚祥书,夏凯,杨垠晖,杜晓晨,冯海林
      2022, 26(4): 711-721. DOI: 10.11834/jrs.20220163
      结合多光谱影像降维与深度学习的城市单木树冠检测
      摘要:多光谱数据的降维处理对基于深度学习的单木树冠检测研究有重要意义,如何使用合适的降维方法以提高单木检测的精度却少有研究讨论。本文使用无人机搭载多光谱相机进行航拍作业,采集研究区内银杏树种多光谱影像。将原始多光谱影像通过特征波段选择、特征提取、波段组合的方法生成5种不同的数据集用于训练3种经典的深度学习网络FPN-Faster-R-CNN,YOLOv3,Faster R-CNN。其中由波段组合方法得到的近红外、红色、绿色波段组合在不同类型的目标检测网络中都有最好的检测结果,其中FPN-Faster-R-CNN网络对银杏树冠的检测精度最高为88.4%,由OIF指标得到的蓝色、红色、近红外波段组合信息量最高,但在所有网络中的平均检测精度最低,仅为79.3%。实验结果表明:在不同波段降维方法中,若降维后的影像中目标物体的色彩与背景差异较明显,且轮廓清晰,则深度学习网络对树冠的检测可获得较好的结果。而影像自身的信息量则对深度学习网络的树冠检测能力的提升作用有限。本研究中针对多光谱影像的降维方法分析,为基于深度学习的单木树冠检测研究提供了重要的实验参考。  
      关键词:遥感;单木树冠检测;深度学习;无人机;多光谱影像;降维   
      1082
      |
      632
      |
      2
      <HTML>
      <网络PDF><Enhanced-PDF><Meta-XML>
      <引用本文> <批量引用> 25459191 false
      发布时间:2022-11-01
    • 薛朝辉,张瑜娟
      2022, 26(4): 722-738. DOI: 10.11834/jrs.20220359
      基于卷积核哈希学习的高光谱图像分类
      摘要:高光谱遥感可同步获取地表覆盖空间影像和连续且精细的光谱数据,能够实现对地物的精细分类与识别。然而,高光谱图像的高维特性对分类带来巨大挑战。为此,本文探讨了一种基于卷积核哈希学习的高光谱图像分类方法。哈希学习可以将高维信息表达为低维哈希编码,通过计算哈希编码内积并借助最小汉明距离实现分类。为了有效表达非线性数据,又发展了核哈希学习方法。然而,直接应用核哈希学习进行高光谱图像分类存在运行速度慢和未考虑空间邻域信息的不足。为此,本文在核哈希学习中引入径向基函数RBF(Radial Basis Function)作为损失函数以提高运行效率;同时,借助四维卷积操作充分表达空间邻域信息,提出了基于卷积核哈希学习的高光谱图像分类方法CKSH(Supervised Hashing with RBF Kernel and Convolution),同时探讨了该方法在仅利用光谱特征和光谱—空间联合特征上的分类效果。在国际通用测试数据Indian Pines和University of Pavia上进行了实验,结果表明:本文提出的CKSH方法优于传统分类方法(支持向量机、随机子空间)和其他哈希学习方法(如谱哈希、球哈希、监督离散哈希、潜在因子哈希等),同时在不同训练样本数量条件下均取得了较高的分类精度,达到96.12%(Indian Pines,10%的训练样本)和98.00%(University of Pavia,5%的训练样本),从而验证了该方法的有效性。  
      关键词:遥感;高光谱图像;哈希学习;RBF;四维卷积;特征提取;光谱—空间分类   
      1054
      |
      345
      |
      1
      <HTML>
      <网络PDF><Enhanced-PDF><Meta-XML>
      <引用本文> <批量引用> 25460040 false
      发布时间:2022-11-01
    • 苏扬,吴鹏海,程洁,殷志祥,马晓双,杨辉
      2022, 26(4): 739-751. DOI: 10.11834/jrs.20220426
      AMSR-E地表温度数据重建深度学习方法
      摘要:地表温度对于全球气候变化等研究具有重要意义。被动微波遥感传感器AMSR-E(Advanced Microwave Scanning Radiometer for EOS)可以获得全天候地表温度,可作为多云条件下热红外地表温度数据的补充;但轨道扫描间隙限制了该数据在全球或区域尺度上的实际应用。鉴于地表温度的高时空异质性和AMSR-E LST轨道间隙数据的特点,本文提出了一种多时相特征连接卷积神经网络地表温度双向重建模型(MTFC-CNN),利用深度学习在处理复杂非线性问题上的优势,重建轨道间隙区域的地表温度值。将2010年中国大陆四季的AMSR-E LST数据(数据未含港澳台区域),分为白天和夜晚,形成共8个数据子集进行实验。在模拟实验中,重建结果与原始反演地表温度值平均均方根误差在1.0 K左右,决定系数R2在0.88以上,优于传统的样条空间插值和时间线性回归方法;真实实验结果具有较好的目视效果,且与对应MODIS LST产品对比发现,重建区LST值和未重建区LST值与MODIS LST产品间具有相近的平均均方根误差和决定系数。因此,本文提出的MTFC-CNN方法能有效重建AMSR-E LST轨道间隙数据,且优于传统方法。  
      关键词:遥感;地表温度;AMSR-E LST;数据重建;深度学习;MTFC-CNN   
      989
      |
      543
      |
      5
      <HTML>
      <网络PDF><Enhanced-PDF><Meta-XML>
      <引用本文> <批量引用> 25459920 false
      发布时间:2022-11-01
    • 常莉莉,王贤敏,王春胜
      2022, 26(4): 752-765. DOI: 10.11834/jrs.20220424
      基于改进Faster R-CNN的码头自动识别
      摘要:码头自动识别能够为港口的建设与开发、海岸带地理信息的获取及海上军事实力的评估提供重要依据。然而由于码头普遍尺寸小、数量多、分布散乱,且受周围船舶、建筑等环境干扰严重,传统算法难以满足对高速发展的码头进行准确监测的需求,如何对码头目标进行准确识别成为亟需解决的问题。本文基于公开遥感数据集及Google Earth高分遥感影像构建了3种码头类型的数据集,并针对码头的尺寸特征和空间分布特征对Faster R-CNN算法进行了如下改进:(1)采用K-Means算法对候选框进行预设,使其大小更适应码头尺寸;(2)采用Soft-NMS算法代替NMS算法,以降低分布密集地区码头的误删率和漏检率。实验结果表明,本文改进的Faster R-CNN算法FKSN(Faster R-CNN+K-Means+Soft-NMS)识别精度达到92.6%,相较Faster R-CNN算法精度提高了8.3%。将码头目标识别结果和传统分类方法ISODATA、SSD及Faster R-CNN、Faster R-CNN+K-Means等目标提取模型的识别结果相对比,本文方法在虚警率和漏检率的评价指标表现最好,分别为3.2%和7.6%,说明本文方法对于各类码头目标识别具有更好的效果。基于改进Faster R-CNN算法的码头自动识别研究可以为码头的合理建设、规划及治理提供技术支持,为港口高效利用和军事实力分析提供有效途径。  
      关键词:Faster R-CNN;码头自动识别;K-Means算法;Soft-NMS算法;高分遥感   
      922
      |
      491
      |
      1
      <HTML>
      <网络PDF><Enhanced-PDF><Meta-XML>
      <引用本文> <批量引用> 25459458 false
      发布时间:2022-11-01

      遥感技术方法

    • 周晓雪,李楠,潘耀忠,孙莉昕
      2022, 26(4): 766-780. DOI: 10.11834/jrs.20229298
      人工蜂群算法优化SVR的叶面积指数反演
      摘要:支持向量机回归SVR(Support Vector Regression)方法作为叶面积指数反演的一种新思路,在LAI反演中具有一定的应用价值和前景,但SVR算法中惩罚系数C、核函数宽度参数g、不敏感损失函数参数ε的取值对回归精度有显著的影响。本文提出了一种基于人工蜂群算法ABC(Artificial Bee Colony)优化SVR参数的遥感影像叶面积指数反演方法。研究数据为美国土壤水分实验(SMEX02)2002年LAI实测数据和同期的Landsat 7 ETM+地表反射率数据,为了验证ABC算法优化SVR各个参数对反演精度的影响,建立了未优化参数(SVR)、优化单个参数(ABC-SVR-C,ABC-SVR-g,ABC-SVR-ε)、优化3个参数(ABC-SVR)的3类LAI反演模型,并比较了其回归拟合精度。在此基础上,分析了3个关键参数对LAI反演模型精度的敏感性,并对ABC算法优化SVR模型的精度进行显著性检验。研究表明:(1)相比未优化参数模型,ABC算法优化模型具有更高的反演精度,优化3个参数优于优化单个参数,回归直线斜率k达到0.797、决定系数r2达到0.775。(2)SVR的3个关键参数对模型精度都有影响,相较参数C和g,参数ε引起模型精度的不确定性更高。(3)95%的置信区间下,ABC-SVR模型与SVR模型的回归直线斜率k、r2、RMSE的差异显著性检验P值均小于0.005,ABC算法显著改善了SVR模型的精度。  
      关键词:支持向量机回归SVR;人工蜂群算法ABC;参数优化;Landsat 7;叶面积指数LAI   
      890
      |
      338
      |
      2
      <HTML>
      <网络PDF><Enhanced-PDF><Meta-XML>
      <引用本文> <批量引用> 25459310 false
      发布时间:2022-11-01
    • 吴庆双,汪明秀,申茜,姚月,李俊生,张方方,周亚明
      2022, 26(4): 781-794. DOI: 10.11834/jrs.20229340
      Sentinel-2遥感图像的细小水体提取
      摘要:基于卫星遥感的水体提取算法对面积较大的水体效果较好,应用于细小水体时受混合像元、异物同谱等因素影响,容易出现误判。Sentinel-2卫星多光谱遥感数据空间分辨率为10 m、20 m、60 m,双星时间分辨率5 d,时间和空间分辨率较高,因此本文采用了Sentinel-2绿光波段(560 nm)、红边波段(705 nm)、近红外波段(842 nm、865 nm)和短波红外波段(2190 nm)的遥感反射率,提出了一种植被红边水体指数算法RWI(Vegetation Red Edge based Water Index)。对比分析了植被、阴影、建筑物、混合像元、裸土、水体6种地物的归一化遥感反射率,从机理上解释了为什么RWI比其他水体指数具有更好的提取细小水体的效果。本文对比了常用的几种水体提取算法,包括改进的归一化差异水体指数MNDWI(Modified Normalized Difference Water Index)、多波段水体指数MBWI(Multi-Band Water Index)、自动水提取指数AWEI(Automated Water Extraction Index),以人工目视解译的水体结果为准,对比以上几种算法得到的水体提取结果,得出RWI、MNDWI、MBWI、AWEIsh、AWEInsh的面积提取差异分别为3.6%,4.2%,12.2%,8.8%,19.8%。从结果可以看出RWI算法精度最高。从影像提取结果来看,本文提出的RWI算法提取的水体边界效果更佳,而且能够一定程度上消除山体和建筑物阴影、云阴影以及混合像元的影响。同时,在2016-01—2018-12时间范围内筛选选取了共43景无云的Sentinel-2影像,利用本文提出的算法对雄安新区、神东矿区、永城矿区3个区域的细小水体分布开展了多时相分析。观察后发现每个时相的结果均十分良好,细小水体的边界区分度较高,基本没有错提、漏提,算法具有良好的适用性和稳定性。  
      关键词:水体提取;水体指数;细小水体;Sentinel-2;RWI;MNDWI;MBWI;AWEI   
      1713
      |
      722
      |
      9
      <HTML>
      <网络PDF><Enhanced-PDF><Meta-XML>
      <引用本文> <批量引用> 25459799 false
      发布时间:2022-11-01
    0