摘要:卷积神经网络CNN(Convolutional Neural Network)和Transformer已被广泛应用于高分辨率遥感影像的建筑物提取任务。然而,CNN在建模长距离空间依赖时仍存在挑战,导致提取的建筑物存在内部空洞问题;而Transformer在捕捉空间局部细节特征上存在不足,容易导致建筑物边缘模糊及小型建筑物的漏检。为解决上述问题,本文提出了一种新型的双流网络模型用于高分辨率遥感影像的建筑物提取,名为ILGS-Net(Network for the Integration of Local and Global Features Stream)。该模型将CNN与Transformer相结合,采用多层级的局部—全局特征融合模块,实现了对建筑物的局部细节特征与全局上下文特征的高效融合。同时,在目标函数中引入边缘损失函数约束模型训练,提高了建筑物边界的定位精度。在3个高分辨率建筑物数据集上的实验结果显示,所提出方法的交并比均高于本文所对比的最佳方法,平均提高了1%。