多源遥感图像融合发展现状与未来展望
Development status and future prospects of multi-source remote sensing image fusion
- 2021年25卷第1期 页码:148-166
纸质出版日期: 2021-01-07
DOI: 10.11834/jrs.20210259
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-01-07 ,
扫 描 看 全 文
李树涛,李聪妤,康旭东.2021.多源遥感图像融合发展现状与未来展望.遥感学报,25(1): 148-166
Li S T,Li C Y and Kang X D. 2021. Development status and future prospects of multi-source remote sensing image fusion. National Remote Sensing Bulletin, 25(1):148-166
近年来,随着遥感技术的发展,高光谱、红外、雷达等多源遥感成像手段在精准农业、资源调查、环境监测、军事国防等重要领域发挥着越来越重要的作用。同一场景多源遥感图像观测的地物对象相同,但观测的维度不同,图像的空间、光谱与时间分辨率存在差异,提供的信息既具有冗余性,又具有互补性和合作性。多源遥感图像融合能够综合利用不同来源获取的遥感图像信息,实现更精准、更全面的对地观测,是遥感对地观测领域的核心关键技术。本文从多源遥感图像的数据来源出发,综述了多源遥感图像融合的研究现状与未来发展趋势:首先介绍了国内外现有多源遥感图像的主要来源、图像特性与典型应用;然后,对不同类型多源遥感图像融合的研究现状和挑战性难题进行了归纳和总结;最后,对多源遥感图像融合的未来发展趋势进行了展望。
The development of multispectral
hyperspectral
infrared
radar
and other sensing technologies in recent years has facilitated the use of remote sensing methods in precision agriculture
resource investigation
environmental monitoring
military defense
and other fields. Multi-source remote sensing images in the same scene can capture the same ground objects
while the dimensions of the observations are independent of each other. Therefore
the imaging scale
spatial resolution
time resolution
and target characteristics may be quite different in different observations. The information provided by massive multi-source remote sensing data is redundant
complementary
and cooperative. Multi-source remote sensing image fusion can utilize the complementary information obtained from different sources to achieve accurate and comprehensive Earth observations. Thus
it is one of the key technologies in remote sensing.
From the perspective of data sources
this review summarizes the research status and future development trends of multi-source remote sensing image fusion. In the introduction
the importance of multi-source image fusion and the motivation of this review are illustrated briefly. The second section outlines the main sources and image characteristics of nine typical remote sensing data: panchromatic images
multispectral images
hyperspectral images
infrared images
nighttime light images
stereo images
video images
Synthetic Aperture Radar (SAR) images
and light detection and ranging (LiDAR) images. The typical applications of these multi-source data are also briefly concluded while introducing the characteristics of these multi-source remote sensing images separately. Moreover
the development trend of multi-source remote sensing image fusion is evaluated according to the number of publications. In the third section
latest studies on multi-source remote sensing image fusion are introduced in detail in the order of optical image fusion
optical and SAR image fusion
optical and LiDAR image fusion
and other types of remote sensing image fusion. The third section also puts forward some challenging problems in remote sensing image fusion. For example
the registration problem of multi-source images
the application problem of fusion in specific domain
and the representation of features during cross-modal fusion are all important problems that need to be solved urgently. In the conclusion section
this review summarizes the research status of the multi-source remote sensing image fusion field. This also section prospects the future development trend of multi-source remote sensing image fusion.
First
the study of related fusion technologies for new types of remote sensing images will be a major future research. Second
the integration of data acquisition and image fusion techniques can reduce the difficulty and improve the performance of image fusion with the help of novel hardware designs. Therefore
multi-modal fusion-based computational imaging systems should be designed. Third
fusing multi-source images with other types of data
such as geographical
ground station
and web data
is an interesting research topic in addition to the fusion of remote sensing images. Finally
evaluating the performance of image fusion is an important problem. Image fusion aims to help better understand the land covers from different dimensions of Earth observations. Whether the fusion can help the understanding of the Earth is unclear. Therefore
the improvement in application performance
such as detection or classification accuracy
may be an important index compared with the enhancement in the quality of the fused image.
遥感图像图像融合多模态对地观测
remote sensing imageimage fusionmulti-modalground observation
Abdikan S, Bilgin G, Sanli F B, Uslu E and Ustuner M. 2015. Enhancing land use classification with fusing dual-polarized TerraSAR-X and multispectral RapidEye data. Journal of Applied Remote Sensing, 9(1): 096054 [DOI: 10.1117/1.JRS.9.096054http://dx.doi.org/10.1117/1.JRS.9.096054]
Adiri Z, El Harti A, Jellouli A, Maacha L, Azmi M, Zouhair M and Bachaoui E. 2020. Mapping copper mineralization using EO-1 Hyperion data fusion with Landsat 8 OLI and Sentinel-2A in Moroccan Anti-Atlas. Geocarto International, 35(7): 781-800 [DOI: 10.1080/10106049.2018.1544287http://dx.doi.org/10.1080/10106049.2018.1544287]
Alparone L, Aiazzi B, Baronti S, Garzelli A, Nencini F and Selva M. 2008. Multispectral and panchromatic data fusion assessment without reference. Photogrammetric Engineering and Remote Sensing, 74(2): 193-200 [DOI: 10.14358/PERS.74.2.193http://dx.doi.org/10.14358/PERS.74.2.193]
Alparone L, Baronti S, Garzelli A and Nencini F. 2004. Landsat ETM+ and SAR image fusion based on generalized intensity modulation. IEEE Transactions on Geoscience and Remote Sensing, 42(12): 2832-2839 [DOI: 10.1109/TGRS.2004.838344http://dx.doi.org/10.1109/TGRS.2004.838344]
Alparone L, Wald L, Chanussot J, Thomas C, Gamba P and Bruce L M. 2007. Comparison of pansharpening algorithms: outcome of the 2006 GRSS data-fusion contest. IEEE Transactions on Geoscience and Remote Sensing, 45(10): 3012-3021 [DOI: 10.1109/TGRS.2007.904923http://dx.doi.org/10.1109/TGRS.2007.904923]
Berger C, Voltersen M, Eckardt R, Eberle J, Heyer T, Salepci N, Hese S, Schmullius C, Tao J Y, Auer S, Bamler R, Ewald K, Gartley M, Jacobson J, Buswell A, Du Q and Pacifici F. 2013. Multi-modal and multi-temporal data fusion: outcome of the 2012 GRSS data fusion contest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3): 1324-1340 [DOI: 10.1109/JSTARS.2013.2245860http://dx.doi.org/10.1109/JSTARS.2013.2245860]
Brunner D, Lemoine G and Bruzzone L. 2010. Earthquake damage assessment of buildings using VHR optical and SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 48(5): 2403-2420 [DOI: 10.1109/TGRS.2009.2038274http://dx.doi.org/10.1109/TGRS.2009.2038274]
Cai Y. 2020. Application of airborne LiDAR in mountain topographic survey. Geomatics and Spatial Information Technology, 43(3): 157-159, 164
蔡悦. 2020. 机载激光LiDAR在密林山区测绘中的应用研究. 测绘与空间地理信息, 43(3): 157-159, 164
Cao Q, Ma A L, Zhong Y F, Zhao J, Zhao B and Zhang L P. 2019. Urban classification by multi-feature fusion of hyperspectral image and LiDAR data. Journal of Remote Sensing, 23(5): 892-903
曹琼, 马爱龙, 钟燕飞, 赵济, 赵贝, 张良培. 2019. 高光谱-LiDAR多级融合城区地表覆盖分类. 遥感学报, 23(5): 892-903 [DOI: 10.11834/jrs.20197512http://dx.doi.org/10.11834/jrs.20197512]
Chandrakanth R, Saibaba J, Varadan G and Raj P A. 2011. Feasibility of high resolution SAR and multispectral data fusion//Proceedings of 2011 IEEE International Geoscience and Remote Sensing Symposium. Vancouver, Canada: IEEE, 356-359 [DOI: 10.1109/IGARSS.2011.6048972http://dx.doi.org/10.1109/IGARSS.2011.6048972]
Chaturvedi S K, Banerjee S and Lele S. 2020. An assessment of oil spill detection using Sentinel 1 SAR-C images. Journal of Ocean Engineering and Science, 5(2): 116-135 [DOI: 10.1016/j.joes.2019.09.004http://dx.doi.org/10.1016/j.joes.2019.09.004]
Chaussard E, Wdowinski S, Cabral-Cano E and Amelung F. 2014. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sensing of Environment, 140: 94-106 [DOI: 10.1016/j.rse.2013.08.038http://dx.doi.org/10.1016/j.rse.2013.08.038]
Chen B, Huang B and Xu B. 2017. Multi-source remotely sensed data fusion for improving land cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 124: 27-39 [DOI: 10.1016/j.isprsjprs.2016.12.008http://dx.doi.org/10.1016/j.isprsjprs.2016.12.008]
Chen S H, Zhang R H, Su H B, Tian J and Xia J. 2010. SAR and multispectral image fusion using generalized IHS transform based on à trous wavelet and EMD decompositions. IEEE Sensors Journal, 10(3): 737-745 [DOI: 10.1109/JSEN.2009.2038661http://dx.doi.org/10.1109/JSEN.2009.2038661]
Chen Y B, Zheng Z H, Wu Z F and Qian Q L. 2019. Review and prospect of application of nighttime light remote sensing data. Progress in Geography, 38(2): 205-223
陈颖彪, 郑子豪, 吴志峰, 千庆兰. 2019. 夜间灯光遥感数据应用综述和展望. 地理科学进展, 38(2): 205-223 [DOI: 10.18306/dlkxjz.2019.02.005http://dx.doi.org/10.18306/dlkxjz.2019.02.005]
Chen Z, Pu H Y, Wang B and Jiang G M. 2014. Fusion of hyperspectral and multispectral images: a novel framework based on generalization of pan-sharpening methods. IEEE Geoscience and Remote Sensing Letters, 11(8): 1418-1422 [DOI: 10.1109/LGRS.2013.2294476http://dx.doi.org/10.1109/LGRS.2013.2294476]
Cui M H, Zhou J J and Chen C. 2004. The physical principle of synthetic aperture radar and its military application. Technology Foundation of National Defence, (4): 4-5, 18
崔麦会, 周建军, 陈超. 2004. 合成孔径雷达的物理原理及其在军事上的应用. 国防技术基础, (41): 4-5, 18
Dian R W, Li S T and Fang L Y. 2019. Learning a low tensor-train rank representation for hyperspectral image super-resolution. IEEE Transactions on Neural Networks and Learning Systems, 30(9): 2672-2683 [DOI: 10.1109/TNNLS.2018.2885616http://dx.doi.org/10.1109/TNNLS.2018.2885616]
Dong C, Loy C C, He K M and Tang X O. 2016. Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2): 295-307 [DOI: 10.1109/TPAMI.2015.2439281http://dx.doi.org/10.1109/TPAMI.2015.2439281]
Du W H, Qin Z H and Li Y. 2018. Advances in thermal infrared remote sensing and its application in agricultural drought monitoring. China Agricultural Informatics, 30(2): 24-41
独文惠, 覃志豪, 黎业. 2018. 热红外遥感及其在农业旱情监测中的应用研究进展. 中国农业信息, 30(2): 24-41 [DOI: 10.12105/j.issn.1672-0423.20180203http://dx.doi.org/10.12105/j.issn.1672-0423.20180203]
Fasbender D, Radoux J and Bogaert P. 2008. Bayesian data fusion for adaptable image pansharpening. IEEE Transactions on Geoscience and Remote Sensing, 46(6): 1847-1857 [DOI: 10.1109/TGRS.2008.917131http://dx.doi.org/10.1109/TGRS.2008.917131]
Feng P M, Lin Y T, Guan J, Dong Y, He G J, Xia Z H and Shi H F. 2019. Embranchment CNN based local climate zone classification using SAR and multispectral remote sensing data//Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan: IEEE: 6344-6347 [DOI: 10.1109/IGARSS.2019.8898703http://dx.doi.org/10.1109/IGARSS.2019.8898703]
Gao F, Hilker T, Zhu X L, Anderson M, Masek J, Wang P J and Yang Y. 2015. Fusing Landsat and MODIS data for vegetation monitoring. IEEE Geoscience and Remote Sensing Magazine, 3(3): 47-60 [DOI: 10.1109/MGRS.2015.2434351http://dx.doi.org/10.1109/MGRS.2015.2434351]
Garzelli A, Nencini F, Alparone L, Aiazzi B and Baronti S. 2004. Pan-sharpening of multispectral images: a critical review and comparison//Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium. Anchorage, USA: IEEE: 84 [DOI: 10.1109/IGARSS.2004.1368950]
Ghadjati M, Moussaoui A and Boukharouba A. 2019. A novel iterative PCA-based pansharpening method. Remote Sensing Letters, 10(3): 264-273 [DOI: 10.1080/2150704X.2018.1547443http://dx.doi.org/10.1080/2150704X.2018.1547443]
Ghahremani M and Ghassemian H. 2016. A compressed-sensing-based pan-sharpening method for spectral distortion reduction. IEEE Transactions on Geoscience and Remote Sensing, 54(4): 2194-2206 [DOI: 10.1109/TGRS.2015.2497309http://dx.doi.org/10.1109/TGRS.2015.2497309]
Ghamisi P, Rasti B, Yokoya N, Wang Q M, Hofle B, Bruzzone L, Bovolo F, Chi M M, Anders K, Gloaguen R, Atkinson P M and Benediktsson J A. 2019. Multisource and multitemporal data fusion in remote sensing: a comprehensive review of the state of the art. IEEE Geoscience and Remote Sensing Magazine, 7(1): 6-39 [DOI: 10.1109/MGRS.2018.2890023http://dx.doi.org/10.1109/MGRS.2018.2890023]
Ghassemian H. 2016. A review of remote sensing image fusion methods. Information Fusion, 32: 75-89 [DOI: 10.1016/j.inffus.2016.03.003http://dx.doi.org/10.1016/j.inffus.2016.03.003]
Gianinetto M, Rusmini M, Marchesi A, Maianti P, Frassy F, Dalla Via G, Dini L and Nodari F R. 2015. Integration of COSMO-SkyMed and GeoEye-1 data with object-based image analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(5): 2282-2293 [DOI: 10.1109/JSTARS.2015.2425211http://dx.doi.org/10.1109/JSTARS.2015.2425211]
Gu X F and Tong X D. 2015. Overview of China earth observation satellite programs [Space Agencies]. IEEE Geoscience and Remote Sensing Magazine, 3(3): 113-129 [DOI: 10.1109/MGRS.2015.2467172http://dx.doi.org/10.1109/MGRS.2015.2467172]
Guo H D. 2012. China’s Earth observing satellites for building a digital earth. International Journal of Digital Earth, 5(3): 185-188 [DOI: 10.1080/17538947.2012.669960http://dx.doi.org/10.1080/17538947.2012.669960]
Guo H D, Fu W X and Liu G. 2019a. Chinese earth observation satellites//Guo H D, Fu W X and Liu G, eds. Scientific Satellite and Moon-Based Earth Observation for Global Change. Singapore: Springer: 189-243 [DOI: 10.1007/978-981-13-8031-0_6http://dx.doi.org/10.1007/978-981-13-8031-0_6]
Guo L, Dou X N, Wang X, Liu S H and Wang Y Y. 2017. On digital orthophoto generation by using data from ZY-3 surveying satellite. Standardization of Surveying and Mapping, 33(4): 28-30
郭莉, 窦小楠, 王霞, 刘书含, 王洋洋. 2017. 基于资源三号测绘卫星数据制作数字正射影像图的研究. 测绘标准化, 33(4): 28-30
Guo L H and Yu X Q. 2013. A survey of the development of foreign surveying and mapping satellites. Geomatics Technology and Equipment, 15(3): 86-88
郭连惠, 喻夏琼. 2013. 国外测绘卫星发展综述. 测绘技术装备, 15(3): 86-88 [DOI: 10.3969/j.issn.1674-4950.2013.03.030http://dx.doi.org/10.3969/j.issn.1674-4950.2013.03.030]
Guo Z M, Jiang Y and Bi S H. 2019. Real-time estimation of tropospheric delay with the use of multi-constellation signals. Journal of Navigation and Positioning, 7(3): 24-30
郭兆明, 姜毅, 毕世华. 2019. 合成孔径雷达卫星车辆运动侦察概率探究. 导航定位学报, 7(3): 24-30 [DOI: 10.16547/j.cnki.10-1096.20190305http://dx.doi.org/10.16547/j.cnki.10-1096.20190305]
Gupta V K, Neog A and Katiyar S K. 2013. Analysis of image fusion techniques over multispectral and microwave SAR images//Proceedings of 2013 International Conference on Communication and Signal Processing. Melmaruvathur, India: IEEE: 1037-1042 [DOI: 10.1109/iccsp.2013.6577214http://dx.doi.org/10.1109/iccsp.2013.6577214]
Haldar D and Patnaik C. 2010. Synergistic use of multi-temporal Radarsat SAR and AWiFS data for Rabi rice identification. Journal of the Indian Society of Remote Sensing, 38(1): 153-160 [DOI: 10.1007/s12524-010-0006-xhttp://dx.doi.org/10.1007/s12524-010-0006-x]
Han X H, Shi B X and Zheng Y Q. 2018. SSF-CNN: spatial and spectral fusion with CNN for hyperspectral image super-resolution//Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP). Athens, Greece: IEEE: 2506-2510 [DOI: 10.1109/ICIP.2018.8451142http://dx.doi.org/10.1109/ICIP.2018.8451142]
Hardie R C, Eismann M T and Wilson G L. 2004. MAP estimation for hyperspectral image resolution enhancement using an auxiliary sensor. IEEE Transactions on Image Processing, 13(9): 1174-1184 [DOI: 10.1109/TIP.2004.829779http://dx.doi.org/10.1109/TIP.2004.829779]
He G J and Li K L. 1997. Spaceborne synthetic aperture radar remote sensing and multi-satellite remote sensing data fusion method. Geological Science and Technology Information, 16(S1): 30-35
何国金, 李克鲁. 1997. 星载合成孔径雷达遥感及多卫星遥感数据融合方法. 地质科技情报, 16(S1): 30-35
Hu B and Wang X Y. 2016. Study on fusion method of multi-spectral and panchromatic remote sensing image for farmland information extraction. Ningxia Engineering Technology, 15(4): 289-293
胡博, 汪西原. 2016. 用于耕地信息提取的多光谱与全色遥感影像融合方法研究. 宁夏工程技术, 15(4): 289-293 [DOI: 10.3969/j.issn.1671-7244.2016.04.001http://dx.doi.org/10.3969/j.issn.1671-7244.2016.04.001]
Hu J S, Ling W, Huang L Q, Gao Q F, Zhao B Q, Guo P J, Bai Y H, Liu B X, An R X and Hu C J. 1997. Stereo-imaging technology in remote sensing. Acta Optica Sinica, 17(2): 222-226
胡家升, 凌伟, 黄廉卿, 高清峰, 赵宝庆, 郭培基, 白雨虹, 刘伯翔, 安瑞霞, 胡存举. 1997. 遥感中的立体成像技术. 光学学报, 17(2): 222-226
Huang A, Wang X H, Yang L A, Du T, Wang Y and Liu J H. 2015. Study on the suitability of Landsat8 OLI mage for fusion algorithms based on the township scale. Journal of Shandong Agricultural University (Natural Science Edition), 46(4): 600-606
黄安, 王旭红, 杨联安, 杜挺, 王元, 刘建红. 2015. 基于乡镇尺度Landsat8 OLI影像融合算法适应性研究. 山东农业大学报(自然科学版), 46(4): 600-606 [DOI: 10.3969/j.issn.1000-2324.2015.04.025http://dx.doi.org/10.3969/j.issn.1000-2324.2015.04.025]
Huang B and Song H H. 2012. Spatiotemporal reflectance fusion via sparse representation. IEEE Transactions on Geoscience and Remote Sensing, 50(10): 3707-3716 [DOI: 10.1109/TGRS.2012.2186638http://dx.doi.org/10.1109/TGRS.2012.2186638]
Huang B and Zhao Y Q. 2017. Research status and prospect of spatiotemporal fusion of multi-source satellite remote sensing imagery. Acta Geodaetica et Cartographica Sinica, 46(10): 1492-1499
黄波, 赵涌泉. 2017. 多源卫星遥感影像时空融合研究的现状及展望. 测绘学报, 46(10): 1492-1499 [DOI: 10.11947/j.AGCS.2017.20170376http://dx.doi.org/10.11947/j.AGCS.2017.20170376]
Idol T, Haack B and Mahabir R. 2015. Comparison and integration of spaceborne optical and radar data for mapping in Sudan. International Journal of Remote Sensing, 36(6): 1551-1569 [DOI: 10.1080/01431161.2015.1015659http://dx.doi.org/10.1080/01431161.2015.1015659]
Jarron L R, Coops N C, MacKenzie W H, Tompalski P and Dykstra P. 2020. Detection of sub-canopy forest structure using airborne LiDAR. Remote Sensing of Environment, 244: 111770 [DOI: 10.1016/j.rse.2020.111770http://dx.doi.org/10.1016/j.rse.2020.111770]
Jiang C, Zhang H Y, Shen H F and Zhang L P. 2012. A practical compressed sensing-based pan-sharpening method. IEEE Geoscience and Remote Sensing Letters, 9(4): 629-633 [DOI: 10.1109/LGRS.2011.2177063http://dx.doi.org/10.1109/LGRS.2011.2177063]
Jiang R. 2016. Spatial Temporal Variation Characteristics and Its Influencing Factors of Thermal Environment in the Urban Area of Shanghai. Shanghai: East China Normal University
姜荣. 2016. 上海市城区热环境时空变化特征及其影响因素研究. 上海: 华东师范大学
Jin H S and Han D. 2017. Multisensor fusion of Landsat images for high-resolution thermal infrared images using sparse representations. Mathematical Problems in Engineering, 2017: 2048098 [DOI: 10.1155/2017/2048098http://dx.doi.org/10.1155/2017/2048098]
Kulkarni S C and Rege P P. 2020. Pixel level fusion techniques for SAR and optical images: a review. Information Fusion, 59: 13-29 [DOI: 10.1016/j.inffus.2020.01.003http://dx.doi.org/10.1016/j.inffus.2020.01.003]
Levin N, Kyba C C M, Zhang Q L, de Miguel A S, Roman M O, Li X, Portnov B A, Molthan A L, Jechow A, Miller S D, Wang Z S, Shrestha R M and Elvidge C D. 2020. Remote sensing of night lights: a review and an outlook for the future. Remote Sensing of Environment, 237: 111443 [DOI: 10.1016/j.rse.2019.111443http://dx.doi.org/10.1016/j.rse.2019.111443]
Li D R. 2012. China's First Civilian Three-line-array stereo mapping satellite: ZY-3. Acta Geodaetica et Cartographica Sinica, 41(3): 317-322
李德仁. 2012. 我国第一颗民用三线阵立体测图卫星—资源三号测绘卫星. 测绘学报, 41(3): 317-322
Li D R and Li X. 2015. An overview on data mining of nighttime light remote sensing. Acta Geodaetica et Cartographica Sinica, 44(6): 591-601
李德仁, 李熙. 2015. 论夜光遥感数据挖掘. 测绘学报, 44(6): 591-601 [DOI: 10.11947/j.AGCS.2015.20150149http://dx.doi.org/10.11947/j.AGCS.2015.20150149]
Li J X. 2009. Optical and SAR images’ feature fusion. Computer Engineering and Applications, 45(24): 178-179
李璟旭. 2009. 可见光与SAR图像的特征级融合. 计算机工程与应用, 45(24): 178-179 [DOI: 10.3778/j.issn.1002-8331.2009.24.053http://dx.doi.org/10.3778/j.issn.1002-8331.2009.24.053]
Li S T and Yang B. 2011. A new pan-sharpening method using a compressed sensing technique. IEEE Transactions on Geoscience and Remote Sensing, 49(2): 738-746 [DOI: 10.1109/TGRS.2010.2067219http://dx.doi.org/10.1109/TGRS.2010.2067219]
Li S T, Dian R W, Fang L Y and Bioucas-Dias J M. 2018. Fusing hyperspectral and multispectral images via coupled sparse tensor factorization. IEEE Transactions on Image Processing, 27(8): 4118-4130 [DOI: 10.1109/TIP.2018.2836307http://dx.doi.org/10.1109/TIP.2018.2836307]
Li S T, Yin H T and Fang L Y. 2013. Remote sensing image fusion via sparse representations over learned dictionaries. IEEE Transactions on Geoscience and Remote Sensing, 51(9): 4779-4789 [DOI: 10.1109/TGRS.2012.2230332http://dx.doi.org/10.1109/TGRS.2012.2230332]
Li X M, Yan Y P, Liu G, Li D L, Zhang X and Zhuang Y C. 2016. Application of ZY-102 C satellite data to hydrogeological investigation in Zanda area, Tibet. Remote Sensing for Land and Resources, 28(4): 141-148
李晓民, 燕云鹏, 刘刚, 李冬玲, 张兴, 庄永成. 2016. ZY-102C星数据在西藏札达地区水文地质调查中的应用. 国土资源遥感, 28(4): 141-148 [DOI: 10.6046/gtzyyg.2016.04.22http://dx.doi.org/10.6046/gtzyyg.2016.04.22]
Licciardi G A, Khan M M and Chanussot J. 2012. Fusion of hyperspectral and panchromatic images: a hybrid use of indusion and nonlinear PCA//Proceedings of the 2012 19th IEEE International Conference on Image Processing. Orlando, USA: IEEE: 2133-2136 [DOI: 10.1109/ICIP.2012.6467314http://dx.doi.org/10.1109/ICIP.2012.6467314]
Liu C H, Qi Y and Ding W R. 2016. Airborne SAR and optical image fusion based on IHS transform and joint non-negative sparse representation//Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing, China: IEEE: 7196-7199 [DOI: 10.1109/IGARSS.2016.7730877http://dx.doi.org/10.1109/IGARSS.2016.7730877]
Liu G X. 2004. Principles of imaging SAR and characteristics of SAR image. Surveying and Mapping of Sichuan, 27(3): 141-143
刘国祥. 2004. SAR成像原理与图像特征. 四川测绘, 27(3): 141-143 [DOI: 10.3969/j.issn.1674-5019.2004.03.013http://dx.doi.org/10.3969/j.issn.1674-5019.2004.03.013]
Liu J, Huang J Y, Liu S G, Li H L, Zhou Q M and Liu J C. 2015. Human visual system consistent quality assessment for remote sensing image fusion. ISPRS Journal of Photogrammetry and Remote Sensing, 105: 79-90 [DOI: 10.1016/j.isprsjprs.2014.12.018http://dx.doi.org/10.1016/j.isprsjprs.2014.12.018]
Liu J J, Zhang J, Li Z, Zhang G, Du W, Zhao W H and Liu J W. 2018. Technical framework of 1: 10000 cartographic element extraction based on GF-7 satellite. Geomatics World, 25(6): 58-61, 67
刘建军, 张俊, 李曌, 张刚, 杜维, 赵文豪, 刘剑炜. 2018. 基于GF-7卫星的1: 10000制图要素信息提取技术框架建设. 地理信息世界, 25(6): 58-61, 67 [DOI: 10.3969/j.issn.1672-1586.2018.06.011http://dx.doi.org/10.3969/j.issn.1672-1586.2018.06.011]
Liu Q S, Huang C, Liu G H and Yu B W. 2018a. Comparison of CBERS-04, GF-1, and GF-2 satellite panchromatic images for mapping quasi-circular vegetation patches in the Yellow River delta, China. Sensors, 18(8): 2733 [DOI: 10.3390/s18082733http://dx.doi.org/10.3390/s18082733]
Liu Y, Chen X, Wang Z F, Wang Z J, Ward R K and Wang X S. 2018b. Deep learning for pixel-level image fusion: recent advances and future prospects. Information Fusion, 42: 158-173 [DOI: 10.1016/j.inffus.2017.10.007http://dx.doi.org/10.1016/j.inffus.2017.10.007]
Loncan L, de Almeida L B, Bioucas-Dias J M, Briottet X, Chanussot J, Dobigeon N, Fabre S, Liao W Z, Licciardi G A, Simoes M, Tourneret J Y, Veganzones M A, Vivone G, Wei Q and Yokoya N. 2015. Hyperspectral pansharpening: a review. IEEE Geoscience and Remote Sensing Magazine, 3(3): 27-46 [DOI: 10.1109/MGRS.2015.2440094http://dx.doi.org/10.1109/MGRS.2015.2440094]
Luo D Q, Huang Y Q, Wang S Z, Fang Y P and Jin W B. 2016. Spectral signature analysis and band selection of Macheng rhododendron based on Landsat5 TM. Hubei Agricultural Sciences, 55(19): 4991-4994
罗代清, 黄勇奇, 王书珍, 方元平, 金卫斌. 2016. 基于Landsat5 TM的麻城杜鹃花光谱分析与波段选择. 湖北农业科学, 55(19): 4991-4994 [DOI: 10.14088/j.cnki.issn0439-8114.2016.19.023http://dx.doi.org/10.14088/j.cnki.issn0439-8114.2016.19.023]
Ma X J, Huang Z W, Qi S Q, Huang J P, Zhang S, Dong Q Q and Wang X. 2020. Ten-year global particulate mass concentration derived from space-borne CALIPSO lidar observations. Science of the Total Environment, 721: 137699 [DOI: 10.1016/j.scitotenv.2020.137699http://dx.doi.org/10.1016/j.scitotenv.2020.137699]
Mahyari A G and Yazdi M. 2011. Panchromatic and multispectral image fusion based on maximization of both spectral and spatial similarities. IEEE Transactions on Geoscience and Remote Sensing, 49(6): 1976-1985 [DOI: 10.1109/TGRS.2010.2103944http://dx.doi.org/10.1109/TGRS.2010.2103944]
Mura M D, Vivone G, Restaino R, Addesso P and Chanussot J. 2015. Global and local Gram-Schmidt methods for hyperspectral pansharpening//Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan, Italy: IEEE: 37-40 [DOI: 10.1109/IGARSS.2015.7325691http://dx.doi.org/10.1109/IGARSS.2015.7325691]
Palubinskas G. 2014. Quality assessment of pan-sharpening methods//Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City, Canada: IEEE: 2526-2529 [DOI: 10.1109/IGARSS.2014.6946987http://dx.doi.org/10.1109/IGARSS.2014.6946987]
Park J, Min K W, Lee J J, Kil H, Kim V P, Kim H J, Lee E and Lee D Y. 2003. Plasma blob events observed by KOMPSAT-1 and DMSP F15 in the low latitude nighttime upper ionosphere. Geophysical Research Letters, 30(21): 2114 [DOI: 10.1029/2003GL018249http://dx.doi.org/10.1029/2003GL018249]
Qiao J G, Liu X P and Zhang Y H. 2011. Land cover classification using LiDAR height texture and ANNs. Journal of Remote Sensing, 15(3): 539-553
乔纪纲, 刘小平, 张亦汉. 2011. 基于LIDAR高度纹理和神经网络的地物分类. 遥感学报, 15(3): 539 -553 [DOI: 10.11834/jrs.20119281http://dx.doi.org/10.11834/jrs.20119281]
Rasti B, Ghamisi P and Gloaguen R. 2017. Hyperspectral and LiDAR fusion using extinction profiles and total variation component analysis. IEEE Transactions on Geoscience and Remote Sensing, 55(7): 3997-4007 [DOI: 10.1109/TGRS.2017.2686450http://dx.doi.org/10.1109/TGRS.2017.2686450]
Raynolds M K, Comiso J C, Walker D A and Verbyla D. 2008. Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI. Remote Sensing of Environment, 112(4): 1884-1894 [DOI: 10.1016/j.rse.2007.09.008http://dx.doi.org/10.1016/j.rse.2007.09.008]
Ren K, Sun W W, Meng X C, Yang G and Du Q. 2020. Fusing China GF-5 hyperspectral data with GF-1, GF-2 and Sentinel-2A multispectral data: which methods should be used? Remote Sensing, 12(5): 882 [DOI: 10.3390/rs12050882http://dx.doi.org/10.3390/rs12050882]
Scarpa G, Vitale S and Cozzolino D. 2018. Target-adaptive CNN-based pansharpening. IEEE Transactions on Geoscience and Remote Sensing, 56(9): 5443-5457 [DOI: 10.1109/TGRS.2018.2817393http://dx.doi.org/10.1109/TGRS.2018.2817393]
Schmitt M and Zhu X X. 2016. Data fusion and remote sensing: an ever-growing relationship. IEEE Geoscience and Remote Sensing Magazine, 4(4): 6-23 [DOI: 10.1109/MGRS.2016.2561021http://dx.doi.org/10.1109/MGRS.2016.2561021]
Selva M, Aiazzi B, Butera F, Chiarantini L and Baronti S. 2015. Hyper-sharpening: a first approach on SIMGA data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6): 3008-3024 [DOI: 10.1109/JSTARS.2015.2440092http://dx.doi.org/10.1109/JSTARS.2015.2440092]
Seo D K and Eo Y D. 2020. A learning-based image fusion for high-resolution SAR and panchromatic imagery. Applied Sciences, 10(9): 3298 [DOI: 10.3390/app10093298http://dx.doi.org/10.3390/app10093298]
Seo D K, Kim Y H, Eo Y D, Lee M H and Park W Y. 2018. Fusion of SAR and multispectral images using random forest regression for change detection. ISPRS International Journal of Geo-Information, 7(10): 401 [DOI: 10.3390/ijgi7100401http://dx.doi.org/10.3390/ijgi7100401]
Shi Z, Chen C, Xiong Z W, Liu D, Zha Z J and Wu F. 2019. Deep residual attention network for spectral image super-resolution//Proceedings of Computer Vision - ECCV 2018 Workshops. Munich, Germany: Springer: 214-229 [DOI: 10.1007/978-3-030-11021-5_14http://dx.doi.org/10.1007/978-3-030-11021-5_14]
Shoeiby M, Robles-Kelly A, Timofte R, Zhou R F, Lahoud F, Susstrunk S, Xiong Z W, Shi Z, Chen C, Liu D, Zha Z J, Wu F, Wei K X, Zhang T, Wang L Z, Fu Y, Nagasubramanian K, Singh A K, Singh A, Sarkar S and Ganapathysubramanian B. 2019. PIRM2018 challenge on spectral image super-resolution: methods and results//Proceedings of Computer Vision - ECCV 2018 Workshops. Munich, Germany: Springer: 356-371 [DOI: 10.1007/978-3-030-11021-5_22http://dx.doi.org/10.1007/978-3-030-11021-5_22]
Sun W W, Yang G, Chen C, Chang M H, Huang K, Meng X Z and Liu L Y. 2020. Development status and literature analysis of China’s earth observation remote sensing satellites. Journal of Remote Sensing, 24(5): 479-510
孙伟伟, 杨刚, 陈超, 常明会, 黄可, 孟祥珍, 刘良云. 2020. 中国地球观测遥感卫星发展现状及文献分析. 遥感学报, 24(5): 479-510 [DOI: 10.11834/jrs.20209464http://dx.doi.org/10.11834/jrs.20209464]
Sun Y, Huang G M, Zhao Z and Liu B Q. 2019. SAR and multi-spectral image fusion algorithms with different filtering methods. Remote Sensing Information, 34(4): 114-120
孙越, 黄国满, 赵争, 刘本强. 2019. 不同滤波方法的SAR与多光谱图像融合算法. 遥感信息, 34(4): 114-120 [DOI: 10.3969/j.issn.1000-3177.2019.04.018http://dx.doi.org/10.3969/j.issn.1000-3177.2019.04.018]
Tai J H, Pan B, Zhao S S and Zhao Y. 2017. SAR and multispectral remote sensing image fusion method using Shearlet transform. Geomatics and Information Science of Wuhan University, 42(4): 468-474
邰建豪, 潘斌, 赵珊珊, 赵园. 2007. 基于Shearlet变换的SAR与多光谱遥感影像融合. 武汉大学学报(信息科学版), 42(4): 468-474 [DOI: 10.13203/j.whugis20150768http://dx.doi.org/10.13203/j.whugis20150768]
Tang H J, Wu W B, Yang P, Zhou Q B and Chen Z X. 2010. Recent progresses in monitoring crop spatial patterns by using remote sensing technologies. Scientia Agricultura Sinica, 43(14): 2879-2888
唐华俊, 吴文斌, 杨鹏, 周清波, 陈仲新. 2010. 农作物空间格局遥感监测研究进展. 中国农业科学, 43(14): 2879-2888 [DOI: 10.3864/j.issn.0578-1752.2010.14.006http://dx.doi.org/10.3864/j.issn.0578-1752.2010.14.006]
Tang P F, Miao Z L, Lin C, Du P J and Guo S C. 2020. An automatic method for impervious surface area extraction by fusing high-resolution night light and Landsat OLI images. Journal of Infrared and Millimeter Waves, 39(1): 128-136
唐鹏飞, 苗则朗, 林聪, 杜培军, 郭山川. 2020. 融合高分夜光和Landsat OLI影像的不透水面自动提取方法. 红外与毫米波学报, 39(1): 128-136 [DOI: 10.11972/j.issn.1001-9014.2020.01.017http://dx.doi.org/10.11972/j.issn.1001-9014.2020.01.017]
Tang X M, Xie J F, Liu R, Huang G H, Zhao C G, Zhen Y, Tang H Z and Dou X H. 2020. Overview of the GF-7 laser altimeter system mission. Earth and Space Science, 7(1): e2019EA000777 [DOI: 10.1029/2019EA000777http://dx.doi.org/10.1029/2019EA000777]
Thenkabail P S, Enclona E A, Ashton M S, Legg C and De Dieu M J. 2004. Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests. Remote Sensing of Environment, 90(1): 23-43 [DOI: 10.1016/j.rse.2003.11.018http://dx.doi.org/10.1016/j.rse.2003.11.018]
Thompson D R. 2001. The potential of SAR interferometry for oceanographic measurements: a review//Proceedings of 2001 IEEE International Geoscience and Remote Sensing Symposium. Sydney, Australia: IEEE: 573-574 [DOI: 10.1109/IGARSS.2001.976226http://dx.doi.org/10.1109/IGARSS.2001.976226]
Tiwari P S, Pande H and Aye M N. 2010. Exploiting IKONOS and Hyperion data fusion for automated road extraction. Geocarto International, 25(2): 123-131 [DOI: 10.1080/10106040903180485http://dx.doi.org/10.1080/10106040903180485]
Tong Q X, Zhang B and Zheng L F. 2006. Hyperspectral Remote Sensing. Beijing: Higher Education Press
童庆禧, 张兵, 郑兰芬. 2006. 高光谱遥感. 北京: 高等教育出版社
Tong X D. 2018. Promote the implementation of high-score projects and help the construction of the “Belt and Road” initiative. Spacecraft Recovery and Remote Sensing, 39(4): 18-25
童旭东. 2018. 扎实推进高分专项实施 助力“一带一路”建设. 航天返回与遥感, 39(4): 18-25
Tuia D, Moser G, Le Saux B, Bechtel B and See L. 2017. The 2017 IEEE geoscience and remote sensing society data fusion contest: open data for global multimodal land use classification [Technical Committees]. IEEE Geoscience and Remote Sensing Magazine, 5(4): 110-114 [DOI: 10.1109/MGRS.2017.2760346http://dx.doi.org/10.1109/MGRS.2017.2760346]
Wald L. 1999. Some terms of reference in data fusion. IEEE Transactions on Geoscience and Remote Sensing, 37(3): 1190-1193 [DOI: 10.1109/36.763269http://dx.doi.org/10.1109/36.763269]
Wang J Y, Wang Y M and Li C L. 2010. Noise model of hyperspectral imaging system and influence on radiation sensitivity. Journal of Remote Sensing, 14(4): 607-620
王建宇, 王跃明, 李春来. 2010. 高光谱成像系统的噪声模型和对辐射灵敏度的影响. 遥感学报, 14(4): 607-620 [DOI:10.11834/jrs.20100401http://dx.doi.org/10.11834/jrs.20100401]
Wang Z and Bovik A C. 2002. A universal image quality index. IEEE Signal Processing Letters, 9(3): 81-84. [DOI: 10.1109/97.995823http://dx.doi.org/10.1109/97.995823]
Wang Z, Bovik A C, Sheikh H R and Simoncelli E P. 2004. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4): 600-612 [DOI: 10.1109/TIP.2003.819861http://dx.doi.org/10.1109/TIP.2003.819861]
Waske B, Menz G and Benediktsson J A. 2007. Fusion of support vector machines for classifying SAR and multispectral imagery from agricultural areas//Proceedings of 2007 IEEE International Geoscience and Remote Sensing Symposium. Barcelona, Spain: IEEE: 4842-4845 [DOI: 10.1109/IGARSS.2007.4423945http://dx.doi.org/10.1109/IGARSS.2007.4423945]
Wei A N, Tian L Q, Chen X L and Yu Y M. 2020. Retrieval and application of chlorophyll-A concentration in the Poyang Lake based on exhaustion method: a case study of Chinese Gaofen-5 Satellite AHSI data. Journal of Central China Normal University (Natural Sciences), 54(3): 447-453
韦安娜, 田礼乔, 陈晓玲, 余永明. 2020. 基于穷举法的鄱阳湖叶绿素a浓度高光谱反演模型与应用研究——以GF-5卫星AHSI数据为例. 华中师范大学学报(自然科学版), 54(3): 447-453 [DOI: 10.19603/j.cnki.1000-1190.2020.03.019http://dx.doi.org/10.19603/j.cnki.1000-1190.2020.03.019]
Winter M E and Winter E M. 2002. Physics-based resolution enhancement of hyperspectral data//Proceedings of the SPIE 4725, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII. Orlando: SPIE: 580-587 [DOI: 10.1117/12.478792http://dx.doi.org/10.1117/12.478792]
Wu M F, Sun Z C, Li H, Yang B and Yu S S. 2017. Synergistic use of WorldView-2 imagery and airborne LiDAR data for urban impervious surface estimation. Remote Sensing Information, 32(2): 79-88
吴孟凡, 孙中昶, 李慧, 杨波, 禹丝思. 2017. 融合WorldView-2与机载激光雷达数据估算城市不透水面. 遥感信息, 32(2): 79-88 [DOI: 10.3969/j.issn.1000-3177.2017.02.013http://dx.doi.org/10.3969/j.issn.1000-3177.2017.02.013]
Wu W Y, Jin C, Pang Y W, Zhao L J, Song Y, Hu T G, Zhang D R and Xu J F. 2019. Distribution characteristics of surface thermal environment in Zhejiang province based on thermal infrared remote sensing. Journal of Remote Sensing, 23(4): 796-808
吴文渊, 金城, 庞毓雯, 赵丽佳, 宋瑜, 胡潭高, 张登荣, 徐俊锋. 2019. 热红外遥感浙江地表热环境分布研究. 遥感学报, 23(4): 796-808 [DOI: 10.11834/jrs.20197339http://dx.doi.org/10.11834/jrs.20197339]
Wu X Y and Zhang P L. 2016. Urban boundary extraction by fusing of DMSP-OLS and Landsat images. Journal of Applied Sciences-Electronics and Information Engineering, 34(1): 67-74
吴小语, 张鹏林. 2016. 融合DMSP-OLS和Landsat影像的城区边界提取. 应用科学学报, 34(1): 67-74 [DOI: 10.3969/j.issn.0255-8297.2016.01.008http://dx.doi.org/10.3969/j.issn.0255-8297.2016.01.008]
Xiao L, Liu P F and Li H. 2020. Progress and challenges in the fusion of multisource spatial-spectral remote sensing images. Journal of Image and Graphics, 25(5): 851-863
肖亮, 刘鹏飞, 李恒. 2020. 多源空—谱遥感图像融合方法进展与挑战. 中国图象图形学报, 25(5): 851-863 [DOI: 10.11834/jig.190620http://dx.doi.org/10.11834/jig.190620]
Xie M M, Zhou W, Wang Y L and Chang Q. 2008. Research on the thermal environmental effects of urban land use: Taking Ningbo urban area as an example. Journal of Peking University (Natural Science Edition), 2008(05):815-821
谢苗苗,周伟,王仰麟,常青. 2008. 城市土地利用的热环境效应研究——以宁波城区为例. 北京大学学报(自然科学版),2008(05):815-821 [DOI: 10.13209/j.0479-8023.2008.125http://dx.doi.org/10.13209/j.0479-8023.2008.125]
Xu J, An Y L, Liu S H and Wu S. 2015. Image fusion of Spaceborne SAR Data and multi spectral data for mountainous plateau: a case study on Bijie City, Guizhou Province, China. Earth and Environment, 43(4): 457-463
许璟, 安裕伦, 刘绥华, 吴松. 2015. 高原山区星载合成孔径雷达数据与多光谱数据的图像融合探究——以贵州省毕节市为例. 地球与环境, 43(4): 457-463 [DOI: 10.14050/j.cnki.1672-9250.2015.04.012http://dx.doi.org/10.14050/j.cnki.1672-9250.2015.04.012]
Yao W and Han M. 2010. Fusion of thermal infrared and multispectral remote sensing images via neural network regression. Journal of Image and Graphics, 15(8): 1278-1284
姚为, 韩敏. 2010. 热红外与多光谱遥感图像的神经网络回归融合方法研究. 中国图象图形学报, 15(8): 1278-1284 [DOI: 10.11834/jig.20100811http://dx.doi.org/10.11834/jig.20100811]
Yi W, Zeng Y and Yuan Z. 2018. Fusion of GF-3 SAR and optical images based on the nonsubsampled contourlet transform. Acta Optica Sinica, 38(11): 1110002
易维, 曾湧, 原征. 2018. 基于NSCT变换的高分三号SAR与光学图像融合. 光学学报, 38(11): 1110002 [DOI: 10.3788/AOS201838.1110002http://dx.doi.org/10.3788/AOS201838.1110002]
Yokoya N, Grohnfeldt C and Chanussot J. 2017. Hyperspectral and multispectral data fusion: a comparative review of the recent literature. IEEE Geoscience and Remote Sensing Magazine, 5(2): 29-56 [DOI: 10.1109/MGRS.2016.2637824http://dx.doi.org/10.1109/MGRS.2016.2637824]
Yokoya N, Yairi T and Iwasaki A. 2012. Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion. IEEE Transactions on Geoscience and Remote Sensing, 50(2): 528-537 [DOI: 10.1109/TGRS.2011.2161320http://dx.doi.org/10.1109/TGRS.2011.2161320]
Yu B L, Liu H X and Wu J P. 2010. A method for urban vegetation classification using airborne LiDAR data and high resolution remote sensing images. Journal of Image and Graphics, 15(5): 782-789
余柏蒗, 刘红星, 吴健平. 2010. 一种应用机载LiDAR数据和高分辨率遥感影像提取城市绿地信息的方法. 中国图象图形学报, 15(5): 782-789 [DOI: 10.11834/jig.20100511http://dx.doi.org/10.11834/jig.20100511]
Yuan L, Zhu G B and Xu C J. 2020. Combining synthetic aperture radar and multispectral images for land cover classification: a case study of Beijing, China. Journal of Applied Remote Sensing, 14(2): 026510 [DOI: 10.1117/1.JRS.14.026510http://dx.doi.org/10.1117/1.JRS.14.026510]
Yuan P F, Huang R G, Hu P B and Yang B S. 2018. Road axis extraction method based on multispectral LiDAR data. Journal of Geo-information Science, 20(4): 452-461
袁鹏飞, 黄荣刚, 胡平波, 杨必胜. 2018. 基于多光谱LiDAR数据的道路中心线提取. 地球信息科学学报, 20(4): 452-461 [DOI: 10.12082/dqxxkx.2018.170634http://dx.doi.org/10.12082/dqxxkx.2018.170634]
Zhan H. 2017. The first two satellites OVS-1A/1
B of Zhuhai-1 Remote-sensing Micro/Nano satellites constellation launched successfully. Space International, (6): 14-15 (詹桓. 2017. 珠海-1遥感微纳卫星星座首批星——欧比特视频卫星-1A、1B成功发射. 国际太空, (6): 14-15)
Zhan W F, Chen Y H, Zhou J, Li J and Liu W Y. 2011. Sharpening thermal imageries: a generalized theoretical framework from an assimilation perspective. IEEE Transactions on Geoscience and Remote Sensing, 49(2): 773-789 [DOI: 10.1109/TGRS.2010.2060342http://dx.doi.org/10.1109/TGRS.2010.2060342]
Zhang B J. 2018. Analysis of the inter- annual variation of nighttime lights in the most affected area of Wenchuan earthquake from 2003 to 2013. Journal of Catastrophology, 33(1): 12-18, 22 (张宝军. 2018. 2003-2013年汶川地震极重灾区夜间灯光年际变化分析. 灾害学, 33(1): 12-18, 22) [DOI: 10.3969/j.issn.1000-811X.2018.01.003http://dx.doi.org/10.3969/j.issn.1000-811X.2018.01.003]
Zhang G L, Zhu R F, Du Y B, Qu C M and Li B B. 2020. Application of Jilin No.1 high-resolution luminous remote sensing image in city monitoring. Satellite Application, (3): 27-33
张国亮, 朱瑞飞, 杜一博, 曲春梅, 李贝贝. 2020. 吉林一号高分辨率夜光遥感影像在城市监测中的应用. 卫星应用, (3): 27-33
Zhang H, Shen H F and Zhang L P. 2016. Fusion of multispectral and SAR images using sparse representation//Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium. Beijing, China: IEEE: 7200-7203 [DOI: 10.1109/IGARSS.2016.7730878http://dx.doi.org/10.1109/IGARSS.2016.7730878]
Zhang J Y, Ma Y, Zhang Z and Liang J. 2015. Research on inversion method of deep stereoscopic perspective image of shallow sea water of islands and reefs based on decision fusion//Proceedings of Academic Papers of Chinese Ocean Society in 2015. Beijing: Chinese Society for Oceanography: 111-119
张靖宇, 马毅, 张震, 梁建. 2015. 基于决策融合的海岛礁浅海水深立体遥感影像反演方法研究//“一带一路”战略与海洋科技创新——中国海洋学会2015年学术论文集. 北京: 中国海洋学会: 111-119
Zhang K, Wang M and Yang S Y. 2017. Multispectral and hyperspectral image fusion based on group spectral embedding and low-rank factorization. IEEE Transactions on Geoscience and Remote Sensing, 55(3): 1363-1371 [DOI: 10.1109/TGRS.2016.2623626http://dx.doi.org/10.1109/TGRS.2016.2623626]
Zhang L F, Peng M Y, Sun X J, Cen Y and Tong Q X. 2019. Progress and bibliometric analysis of remote sensing data fusion methods (1992—2018). Journal of Remote Sensing, 23(4): 603-619
张立福, 彭明媛, 孙雪剑, 岑奕, 童庆禧. 2019. 遥感数据融合研究进展与文献定量分析(1992—2018). 遥感学报, 23(4): 603-619[DOI: 10.11834/jrs.20199073http://dx.doi.org/10.11834/jrs.20199073]
Zhang L P and Shen H F. 2016. Progress and future of remote sensing data fusion. Journal of Remote Sensing, 20(5): 1050-1061
张良培, 沈焕锋. 2016. 遥感数据融合的进展与前瞻. 遥感学报, 20(5): 1050-1061 [DOI: 10.11834/jrs.20166243http://dx.doi.org/10.11834/jrs.20166243].
Zhang M and Zeng Y N. 2018. Net primary production estimation by using fusion remote sensing data with high spatial and temporal resolution. Journal of Remote Sensing, 22(1): 143-152
张猛, 曾永年. 2018. 融合高时空分辨率数据估算植被净初级生产力. 遥感学报, 22(1): 143-152 [DOI: 10.11834/jrs.20186499http://dx.doi.org/10.11834/jrs.20186499]
Zhang Y and Hong G. 2005. An IHS and wavelet integrated approach to improve pan-sharpening visual quality of natural colour IKONOS and QuickBird images. Information Fusion, 6(3): 225-234 [DOI: 10.1016/j.inffus.2004.06.009http://dx.doi.org/10.1016/j.inffus.2004.06.009]
Zhang Y J, Zheng M T, Xiong J X, Lu Y H and Xiong X D. 2014. On-Orbit geometric calibration of ZY-3 three-line array imagery with multistrip data sets. IEEE Transactions on Geoscience and Remote Sensing, 52(1): 224-234 [DOI: 10.1109/TGRS.2013.2237781http://dx.doi.org/10.1109/TGRS.2013.2237781]
Zhong Y F, Cao Q, Zhao J, Ma A L, Zhao B and Zhang L P. 2017. Optimal decision fusion for urban land-use/land-cover classification based on adaptive differential evolution using hyperspectral and LiDAR data. Remote Sensing, 9(8): 868 [DOI: 10.3390/rs9080868http://dx.doi.org/10.3390/rs9080868]
Zhu X L, Helmer E H, Gao F, Liu D S, Chen J and Lefsky M A. 2016. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sensing of Environment, 172: 165-177 [DOI: 10.1016/j.rse.2015.11.016http://dx.doi.org/10.1016/j.rse.2015.11.016]
Zhu X X and Bamler R. 2013. A sparse image fusion algorithm with application to pan-sharpening. IEEE Transactions on Geoscience and Remote Sensing, 51(5): 2827-2836 [DOI: 10.1109/TGRS.2012.2213604http://dx.doi.org/10.1109/TGRS.2012.2213604]
相关作者
相关机构